

Great North Road Solar and Biodiversity Park

Environmental Statement

Volume 4 – Technical Appendices

Technical Appendix A9.1 – Flood Risk Assessment (Tracked)

Document reference – EN010162/APP/6.4.9.1BA

Revision number 32

August December 2025

Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009, APFP Regulation 5(2)(a)

Contents

A9.1.1	Introduction	3
A9.1.1.1	Background	3
A9.1.1.2	Methodology	3
A9.1.1.3	Guidance and Legislation	5
A9.1.1.4	Site Characteristics	6
A9.1.1.5	Flood Classification	7
A9.1.1.6	Flood Defences	10
A9.1.1.7	Pluvial Flooding	10
A9.1.1.8	Reservoir Flooding	17
A9.1.1.9	Flood History	18
A9.1.1.10	Flood Studies	21
A9.1.1.11	Tidal Trent	22
A9.1.1.12	Fluvial Trent	24
A9.1.1.13	River Greet	28
A9.1.2	Flood Risk Assessment	36
A9.1.2.1	Tidal	36
A9.1.2.2	Fluvial	37
A9.1.2.3	Pluvial	46
A9.1.2.4	Groundwater	52
A9.1.2.5	Reservoirs	53
A9.1.2.6	Sequential Test and Exception Test	53
A9.1.3	Solar PV Surface Water Management	56
A9.1.3.1	Construction Phase	56
A9.1.3.2	Operational Phase	58
A9.1.4	Work Area 5a: BESS Surface Water Management	66
A9.1.4.1	Fire Suppression	67
A9.1.4.2	Fire Suppressant Volume	68
A9.1.5	Work Area 5b: 400 kV Substation	68
A9.1.6	Work Area 4: substations Surface Water Management	69
A9.1.7	Conclusions & Recommendations	71
Appendix A:	EA Correspondence	73
Appendix B:	Infiltration Testing	74
Appendix C:	Sequential Test	75
A9.1.1	Introduction	3
A9.1.1.1	Background	3

<u>A9.1.1.2</u> Consultation	3
<u>A9.1.1.3</u> Methodology	4
<u>A9.1.1.4</u> Guidance and Legislation	5
<u>A9.1.1.5</u> Site Characteristics	6
<u>A9.1.1.6</u> Flood Classification	1
<u>A9.1.1.7</u> Flood Defences	9
<u>A9.1.1.8</u> Pluvial Flooding	10
<u>A9.1.1.9</u> Reservoir Flooding	14
<u>A9.1.1.10</u> Flood History	15
<u>A9.1.1.11</u> Flood Studies	18
<u>A9.1.1.12</u> Tidal Trent	19
<u>A9.1.1.13</u> Fluvial Trent	21
<u>A9.1.1.14</u> River Greet	25
A9.1.2 Flood Risk Assessment	26
<u>A9.1.2.1</u> Tidal	26
<u>A9.1.2.2</u> Fluvial	26
<u>A9.1.2.3</u> Pluvial	36
<u>A9.1.2.4</u> Groundwater	43
<u>A9.1.2.5</u> Reservoirs	44
<u>A9.1.2.6</u> Sequential Test and Exception Test	Error! Bookmark not defined.
A9.1.3 Solar PV Surface Water Management	47
<u>A9.1.3.1</u> Construction Phase	47
<u>A9.1.3.2</u> Operational Phase	49
A9.1.4 Work Area 5a: BESS Surface Water Management	57
<u>A9.1.4.1</u> Fire Suppression	58
<u>A9.1.4.2</u> Fire Suppressant Volume	59
A9.1.5 Work Area 5b: 400 kV Substation	59
A9.1.6 Work Area 4: substations Surface Water Management	60
A9.1.7 Conclusions & Recommendations	62
Appendix A: EA Correspondence	
Appendix B: Infiltration Testing	
Appendix C : Figures	
Appendix D : FRA Consultation	

A9.1.1 INTRODUCTION

A9.1.1.1 BACKGROUND

- 1 This Technical Appendix (TA) presents the assessment of Flood Risk and surface water run-off management. This Flood Risk Assessment has been prepared as part of an Environmental Statement for a solar PV (the Development) located on land to the northwest of Newark, in the Newark and Sherwood district, Nottinghamshire, East Midlands, which comprise the Order Limits.
- 2 The Order Limits form the Core Study Area (CSA) for this assessment.
- 3 The areas within the CSA are described in ES Chapter 5, Development Description, [EN010162/APP/6.2.5] as being one of the following areas:
 - Work Area 1: Solar PV;
 - Work Area 2: Cables;
 - Work Area 3: Mitigation/enhancement;
 - Work Area 4: Intermediate substations;
 - Work Area 5a: BESS;
 - Work Area 5b: 400 kV Substation;
 - Work Area 6: National Grid Staythorpe Substation and connection point;
 - Work Area 7: Consented Staythorpe BESS and Connection; and
 - Work Area 8: Access Works.
- 4 The layout of the above areas, including field numbers, is shown on ES Figure 5.1 [EN010162/APP/6.3.5.1].
- 5 Following consultee feedback, the following changes to the Development layout have occurred:
 - Removal of Work Area 1 in Fields 16, 19, 20 - 30, 45 and 58;
 - Reduction in extent of Work Area 1 in Fields 0, 7, 13, 31, 35, 36, 38, 40, 42-47, 49, 51 - 53, 55 - 57 and 59;
 - Removal of sections of Work Area 2;
 - Removal of one substation in Work Area 4; and
 - Reduction in the Order Limits.
- 6 The Order Limits are located wholly within the administrative area of Newark and Sherwood District Council (NSDC).
- 7 Due to the rural setting in which the Order Limits are located, flooding from artificial sources (e.g., highways drainage) has been scoped out of the assessment, as set out at the PEIR stage.

A9.1.1.2 CONSULTATION

- 8 As set out in Appendix E, the Development has been subject to consultation with the relevant authorities; namely the Environment Agency (EA), Nottingham County Council (as the Lead Local Flood Authority (LLFA)) and the Trent Valley Internal Drainage Board (Trent Valley IDB).
- 9 The LLFA confirmed in their response to the FRA presented in the PEIR that “The Flood Risk Management Team has reviewed the Flood Risk Assessment (Technical Appendix A9.1) and is broadly satisfied with its content”. The EA and Trent Valley IDB have made a number of detailed

comments in respect of hydrology, and have not commented on the methodology used.

10 Feedback received by those parties has been considered in the preparation of this assessment and it is understood that the approach and methodology to the assessment has been substantially agreed. Statements of Common Ground are being progressed with the EA and NCC and will seek to confirm agreement with each relevant party.

A9.1.1.2A9.1.1.3 METHODOLOGY

11 This FRA has been prepared with reference to data, documents and guidance published by the EA, the Lead Local Flood Authority (LLFA) (Nottinghamshire County Council) and the Local Planning Authority (NSDC).

812 Flood risk will be classed as Negligible (where little or no risk is identified), Low (where theoretical risk is identified but mitigating factors may influence flood levels) or Moderate to High (where modelled levels or historical events show risk to the Work Areas)).

913 Several factors will be considered when attributing the residual risk of flooding to the Development, including:

- The depth of flooding;
- The hazard to life during flood water ingress;
- The velocity of floodwater;
- Flooding extent / ingress;
- Type of infrastructure affected; and
- Intervening structures / flood protection.

4014 The conclusion section of this FRA provides justification for the risk category using professional judgement and experience of assessing similar types of projects / scenarios. This approach is consistent with the Flood Risk Assessments prepared in support of a number of made DCOs including the Cleve Hill Solar Park DCO and the Mallard Pass Solar Park DCO, in which both the Examining Authority and Secretary of State were content with the approach adopted in the assessment methodology.

A9.1.1.2.1A9.1.1.3.1 Study Area

4415 The Core Study Area is defined by the Order Limits. The Wider Study Area (WSA) is defined as a 5 km buffer of the Order Limits.

4216 Where figures within this FRA show the CSA, this also refers to the Order Limits.

A9.1.1.2.2A9.1.1.3.2 Climate Change Allowances

A9.1.1.2.2.1A9.1.1.3.2.1 Fluvial

4317 As the Development is Essential Infrastructure in Annex 3: Flood risk vulnerability classification - Guidance to the NPPF¹ and will have a lifespan of 40 years (anticipated to be decommissioned from 2069) the Development is required by the Environment Agency (EA) Flood risk assessments: climate

¹ <https://www.gov.uk/guidance/national-planning-policy-framework/annex-3-flood-risk-vulnerability-classification>

change allowances guidance² to account for a 23 % climate change (CC) allowance (Higher Central) for the 2050s epoch (2040-2069) for the Lower Trent and Erewash Management Catchment³.

⁴⁴¹⁸Where fluvial modelling indicates that the required 23 % CC allowance is not available, then a higher proxy value will be used.

⁴⁵¹⁹The Development has also been assessed against the Higher CC allowance of 38 % for the 2050s epoch as a validation check.

A9.1.1.2.2A9.1.1.3.2.2 Tidal

⁴⁶²⁰A 39 % CC (2050s epoch) allowance has been used to assess tidal flooding, while a 62 % CC allowance (2080s epoch) has been used as a validation check.

A9.1.1.2.2.3A9.1.1.3.2.3 Pluvial

⁴⁷²¹The Lower Trent and Erewash Management Catchment peak rainfall Central Allowance of 25 % for the 2070s epoch will be used to assess pluvial flooding.

A9.1.1.2.2.4A9.1.1.3.2.4 SuDS

⁴⁸²²Whilst the Lower Trent and Erewash Management Catchment peak rainfall Central Allowance of 25 % for the 2070s epoch is required by the EA, consultation with the Lead Local Flood Authority (LLFA) highlighted that a 40 % CC allowance should be used where possible.

⁴⁹²³As such, a 40 % CC allowance will be used for Sustainable Drainage Systems (SuDS) structures such as those which will serve Work Area 5a, BESS, and 5b, 400 kV Compound.

A9.1.1.3A9.1.1.4 GUIDANCE AND LEGISLATION

²⁰²⁴This document is intended to meet the requirements of:

- The EA⁴;
- National Policy Statement (NPS) for Energy EN-1⁵;
- NPS for Renewable Energy EN-3⁶;
- NPS for Electricity Networks Infrastructure EN-5⁷;
- Nottinghamshire Local Flood Risk Management Strategy (LFRMS) 2021-2027⁸;
- NSDC Strategic Flood Risk Assessment (SFRA) Update (2016)⁹;

² <https://www.gov.uk/guidance/flood-risk-assessments-climate-change-allowances>

³ <https://environment-test.data.gov.uk/hydrology/climate-change-allowances/river-flow?mgmtcatid=3052>

⁴ <https://www.gov.uk/guidance/flood-risk-assessment-standing-advice>

⁵ <https://www.gov.uk/government/publications/overarching-national-policy-statement-for-energy-en-1>

⁶ <https://www.gov.uk/government/publications/national-policy-statement-for-renewable-energy-infrastructure-en-3>

⁷ <https://www.gov.uk/government/publications/national-policy-statement-for-electricity-networks-infrastructure-en-5>

⁸ <https://www.nottinghamshire.gov.uk/media/4346719/nottinghamshire-local-flood-risk-mangement-strategy-2021-27.pdf>

⁹ <https://www.newark-sherwooddc.gov.uk/sfraupdate/>

- The NSDC ENV 13 SFRA Level 1 Refresh (September 2023)¹⁰;
- National Fire Chiefs Council (NFCC) – Grid Scale Battery Energy Storage System planning – Guidance for FRS;
- NFCC – Grid Scale Battery Energy Storage System planning – Guidance for FRS – July 2024 Update¹¹;
- The National Fire Protection Association (NFPA) 855 Standard for the Installation of Stationary Energy Storage Systems¹²; and
- The revised National Planning Policy Framework 2024 ('NPPF')¹³.

2425As outlined in NPS EN-1 (paragraph 5.8.15) the minimum requirements for FRAs are that they should be proportionate to the risk and appropriate to the scale, nature and location of the project. Importantly, this FRA should identify and secure opportunities to reduce the causes and impacts of flooding overall during the period of construction.

2226Throughout the early stages of the Development, design opportunities to identify existing pluvial flow pathways and extensive consultation with communities affected by pluvial flooding has been undertaken, with a view to identifying positive interventions to reduce the existing impacts of prolonged or intense rainfall events.

A9.1.1.4A9.1.1.5 SITE CHARACTERISTICS

2327The Order Limits are shown on ES Figure 5.1 [EN010162/APP/6.3.5.1] as being to the west of the A1, north of the A617, east of Eakring, south of Egmanton, and to the north and north-west of Staythorpe. The Development essentially consists of discrete land parcels proposed to be occupied by solar PV panels and connected by cable route areas. The eastern side of the Development runs from the north of North Muskham to Egmanton in the north. The western side of the Development runs north-west from National Grid Staythorpe Substation and then splits at Maplebeck, with spurs running to Eakring in the north-west and Kneesall to the north-northeast, then connecting with the eastern side of the Development.

2428The CSA is generally in arable use, interspersed with woodland and some minor areas of pastoral use, as shown in Plate A9.1.1.

¹⁰ https://www.newark-sherwooddc.gov.uk/media/nsdc-redesign/documents-and-images/your-council/planning-policy/local-development-framework/amended-allocations-and-development-management-dpd/SFRA_Level_1_P04.pdf

¹¹ <https://nfcc.org.uk/>

¹² <https://www.nfpa.org/codes-and-standards/all-codes-and-standards/list-of-codes-and-standards/detail?code=855>

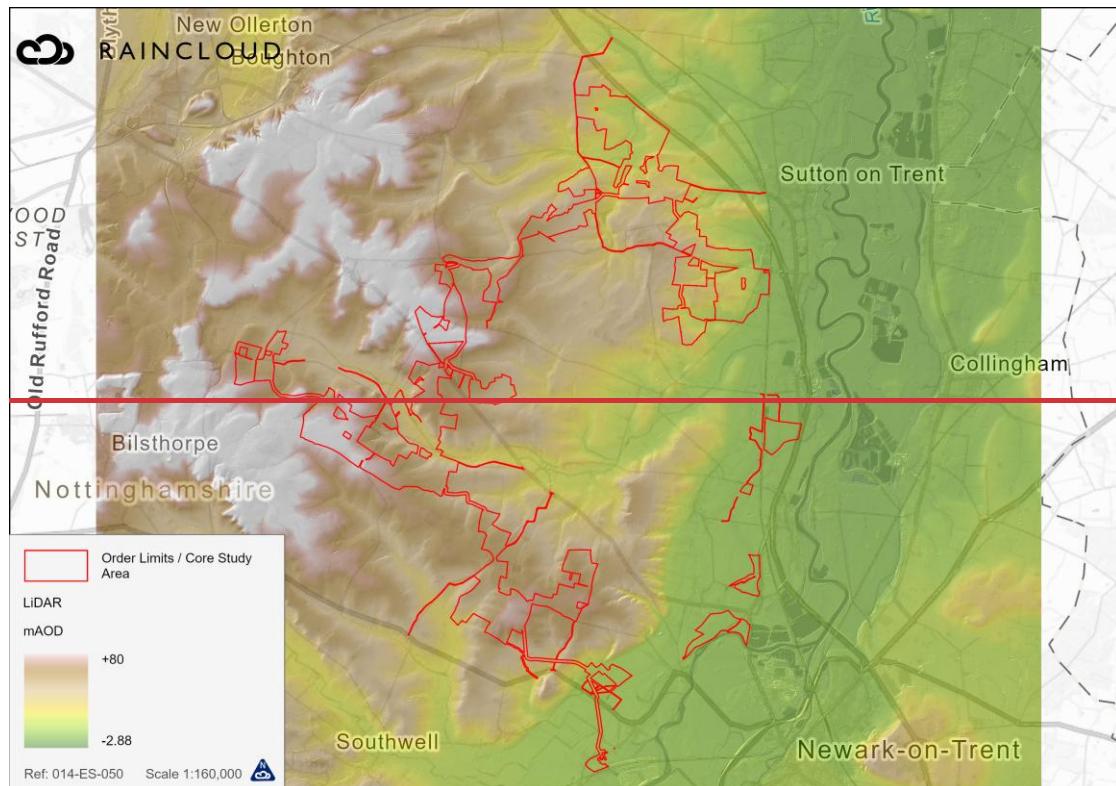
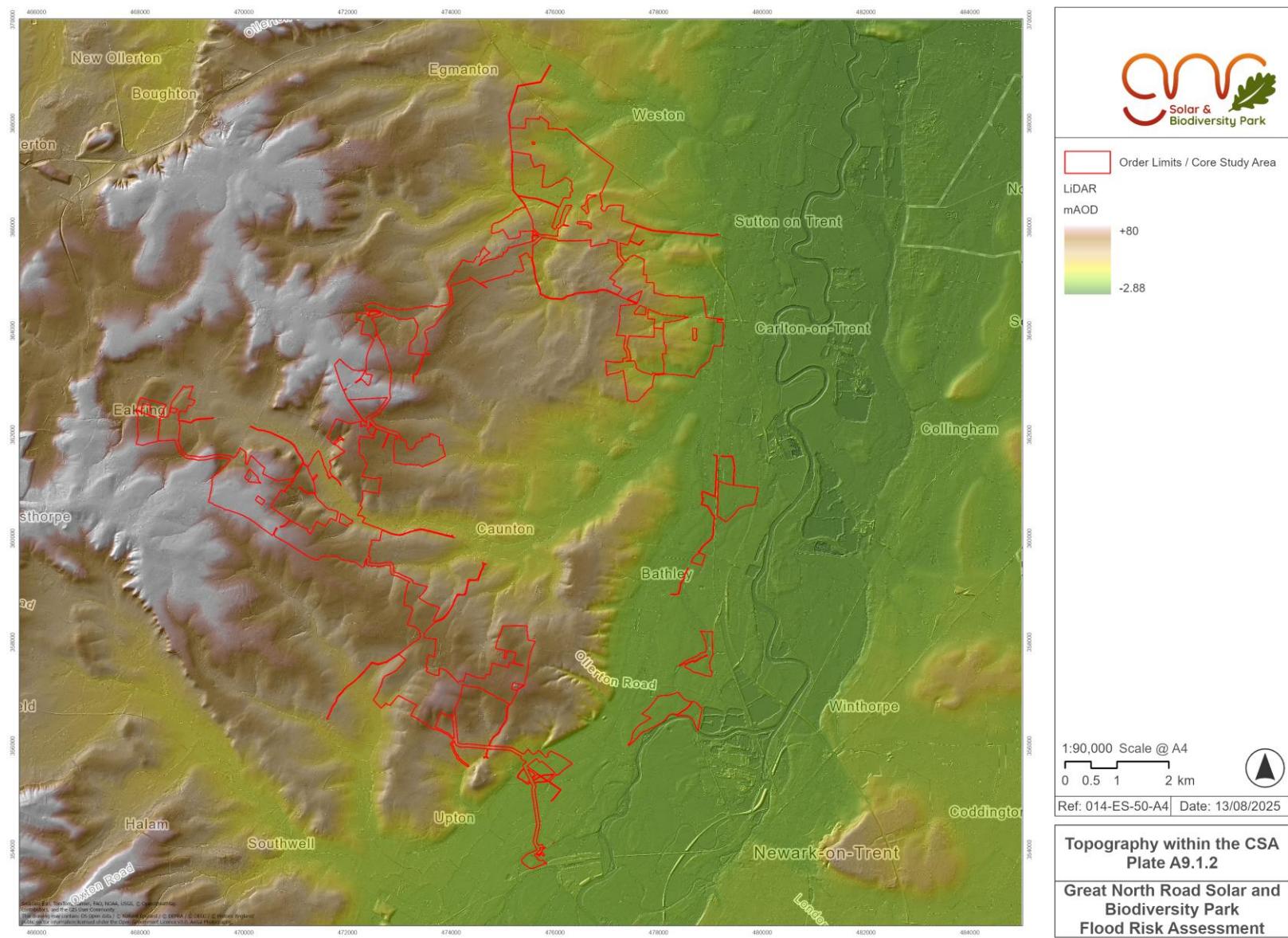

¹³ <https://www.gov.uk/government/publications/national-planning-policy-framework--2>

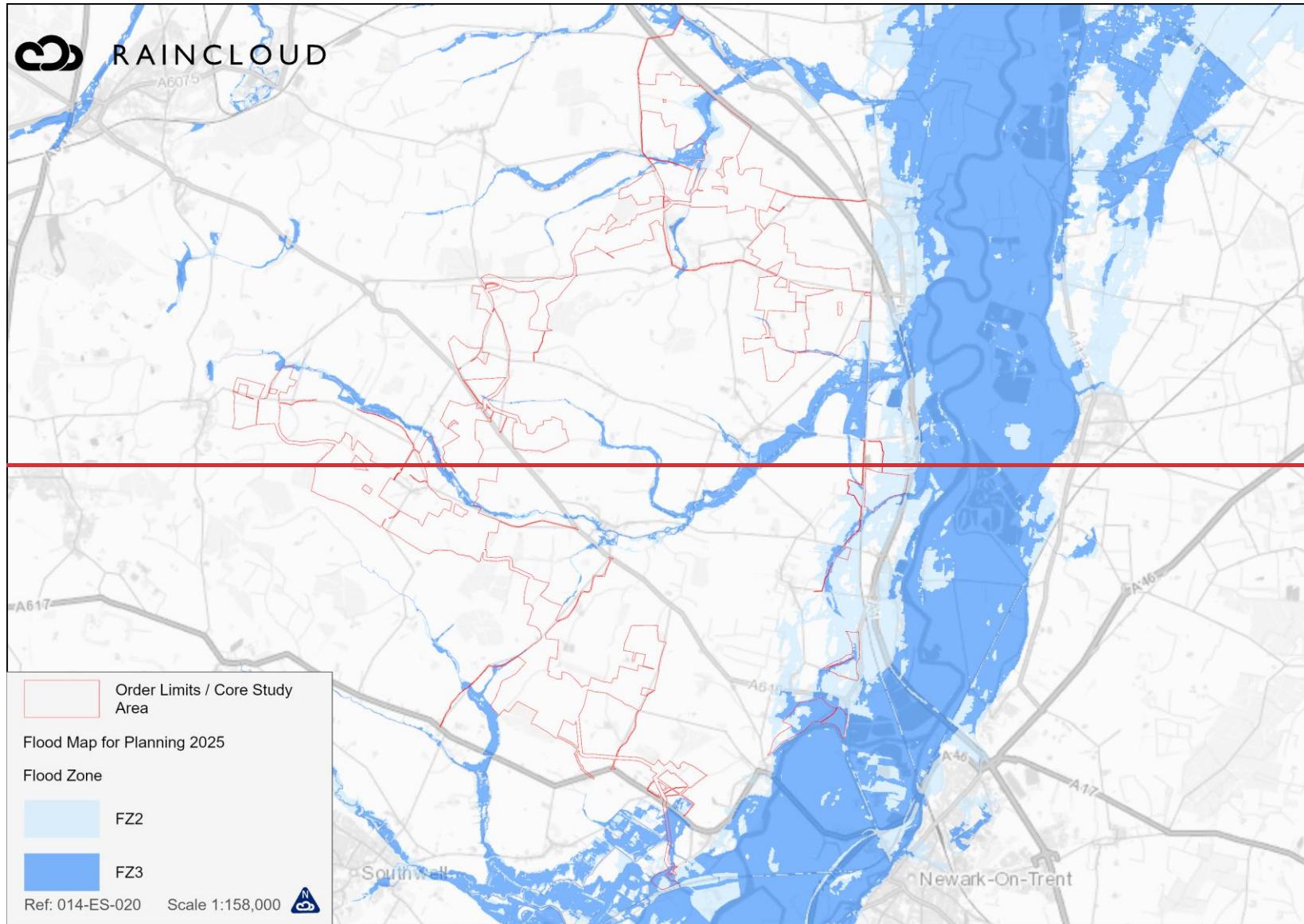
Plate A9.1.1: Greenfield areas - arable conditions west of Maplebeck



25—1 m resolution Lidar data¹⁴ shows that land within the CSA is generally gently sloping, with elevations from 6.85 m AOD in the west to 92.43 m AOD in the east, as shown in Plate A9.1.2.

Plate A9.1.2: Topography within the CSA

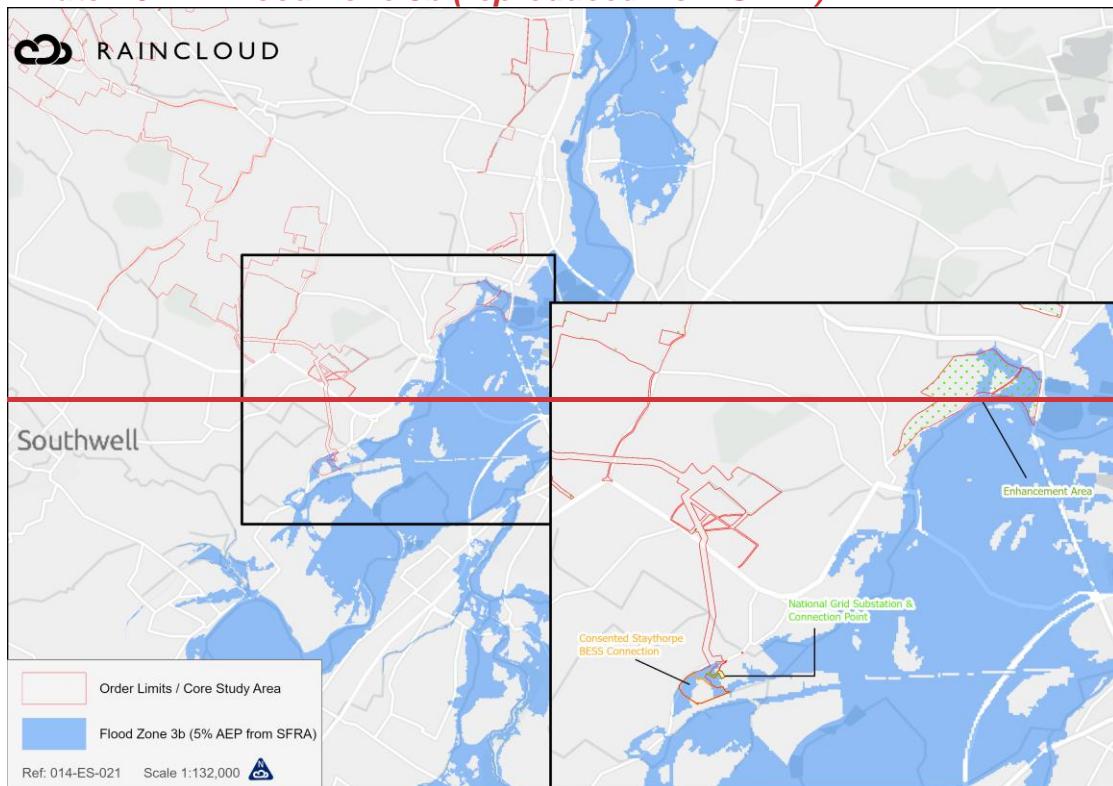
¹⁴ <https://environment.data.gov.uk/survey>


A9.1.1.5A9.1.1.6 FLOOD CLASSIFICATION

²⁶—The EA Flood Map for Planning (2025)¹⁵ shows that the CSA is mostly located in Flood Zone (FZ) 1 (89.9981 %), while 10.0119 % lies in FZ 2 and FZ 3, as shown in PlateFigure A9.1.3.

¹⁵ <https://flood-map-for-planning.service.gov.uk/>

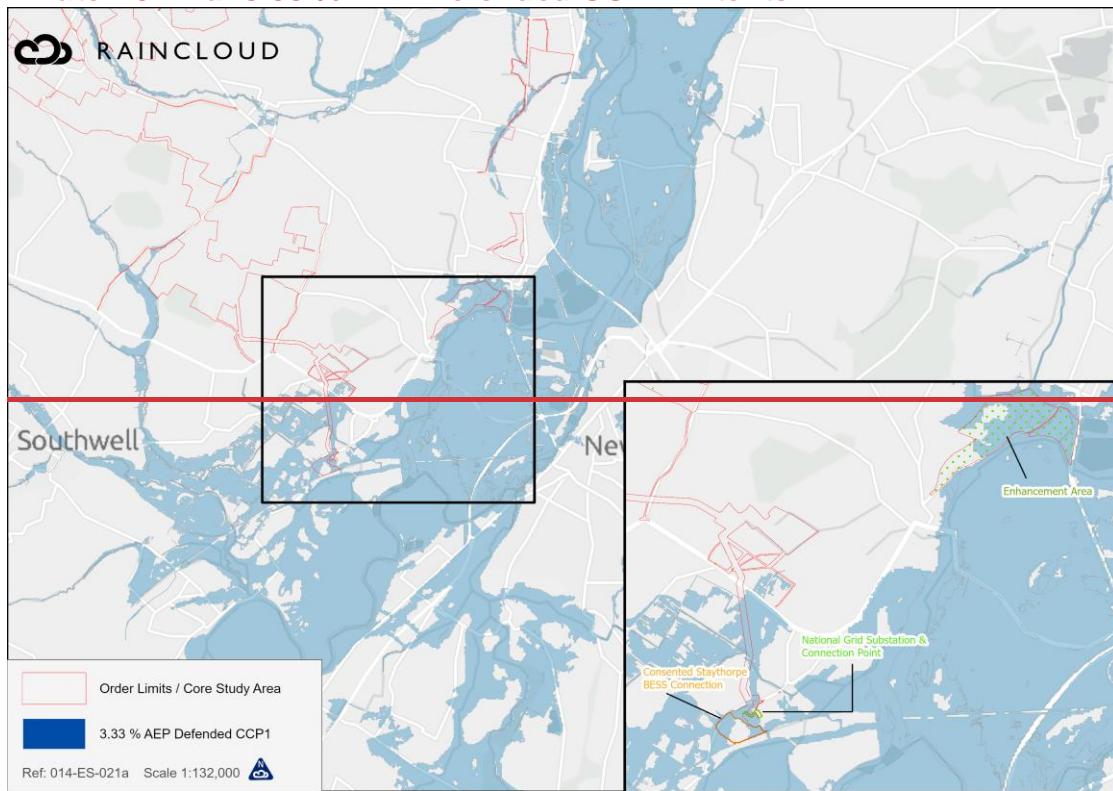
Plate A9.1.3: Flood Zones 2025



2729 in Appendix D, which assumes all watercourses are flooded at the same time and is represented by the EA's NaFRA2 data. The following Work Areas are located outside FZ 2, FZ 3 and the future floodplain:

- Work Area 1: Solar PV (based on illustrative design);
- Work Area 4: Intermediate Substations;
- Work Area 5a: BESS; and
- Work Area 5b: 400 kV substation.

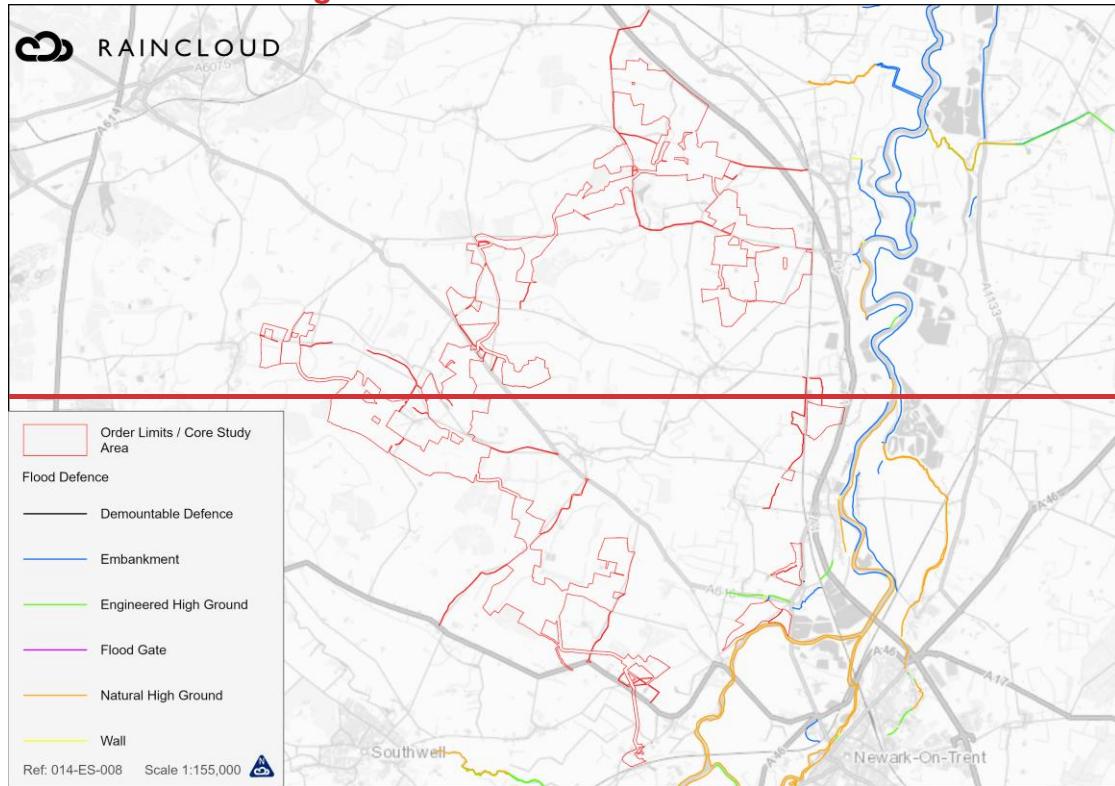
2830As identified in the SFRA, minor areas of the CSA are located within the functional floodplain (Flood Zone 3b), specifically Work Area 3: Mitigation, Work Area 6: National Grid Staythorpe Substation and connection point, Work Area 7: Consented Staythorpe BESS and Connection and Work Area 8: Access, as shown in PlateFigure A9.1.42 in Appendix C.


Plate A9.1.4: Flood Zone 3b (reproduced from SFRA)

2931The NaFRA2 dataset¹⁶ includes the 3.33 % AEP Defended CCP1 outline as the future functional floodplain, with the extents being very similar to the SFRA functional floodplain and is shown in PlateFigure A9.1.4a3 in Appendix C.

¹⁶ <https://www.gov.uk/guidance/updates-to-national-flood-and-coastal-erosion-risk-information>

~~Plate A9.1.4a: 3.33 % AEP Defended CCP1 Extents~~



³⁰³²No Solar PV or new aboveground ancillary infrastructure will be located in the functional or future floodplain.

A9.1.1.6A9.1.1.7 FLOOD DEFENCES

³⁴³³Existing flood defences are located adjacent to the River Trent and River Greet and are shown on [PlateFigure A9.1.54 in Appendix D](#) and in Appendix A (EA Consultation).

Plate A9.1.5: Existing Flood Defences

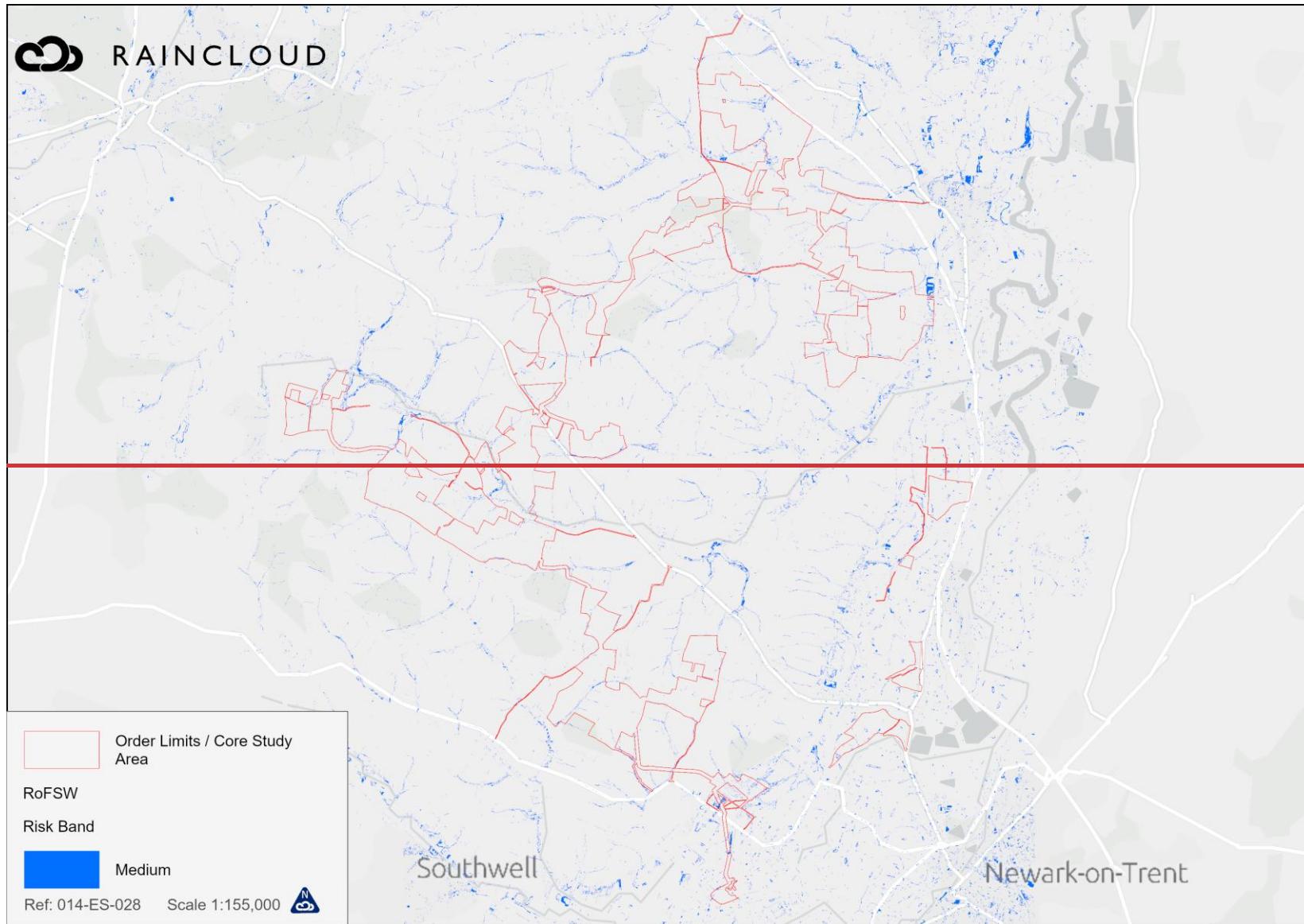
³²³⁴ The left (west) bank of the River Trent is flanked by embankments and naturally high ground which have a Standard of Protection between 1:2 and 1:10 (50 % annual exceedance probability (AEP) and 10 % AEP)¹⁷.

³³³⁵ The operational National Grid Staythorpe Substation (Work Area 6) has a private flood defence scheme, which comprises 'hard' engineered walls and 'soft' spoil embankments to a level of 13.10 m AOD, as part of NSDC planning application 14/00091/ELE¹⁸.

³⁴³⁶ The EA Asset Management Database¹⁹ shows that the defences adjacent to the River Trent have not been accounted for in the Flood Map for Planning.

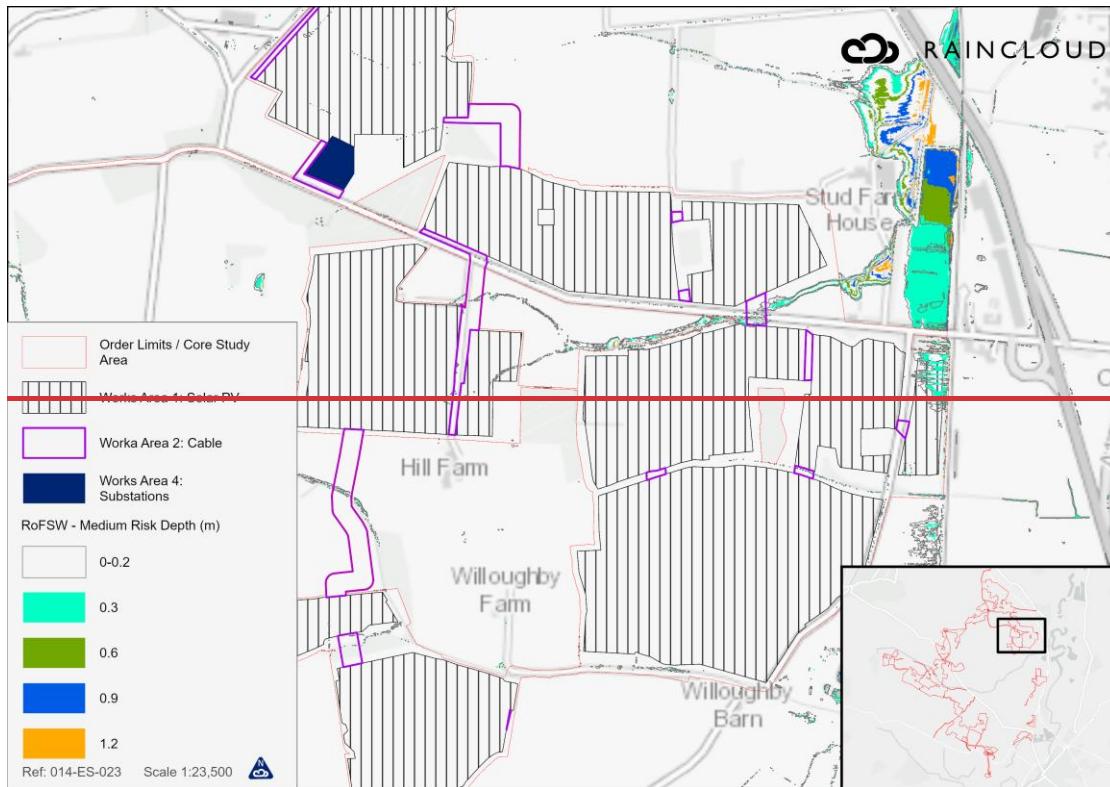
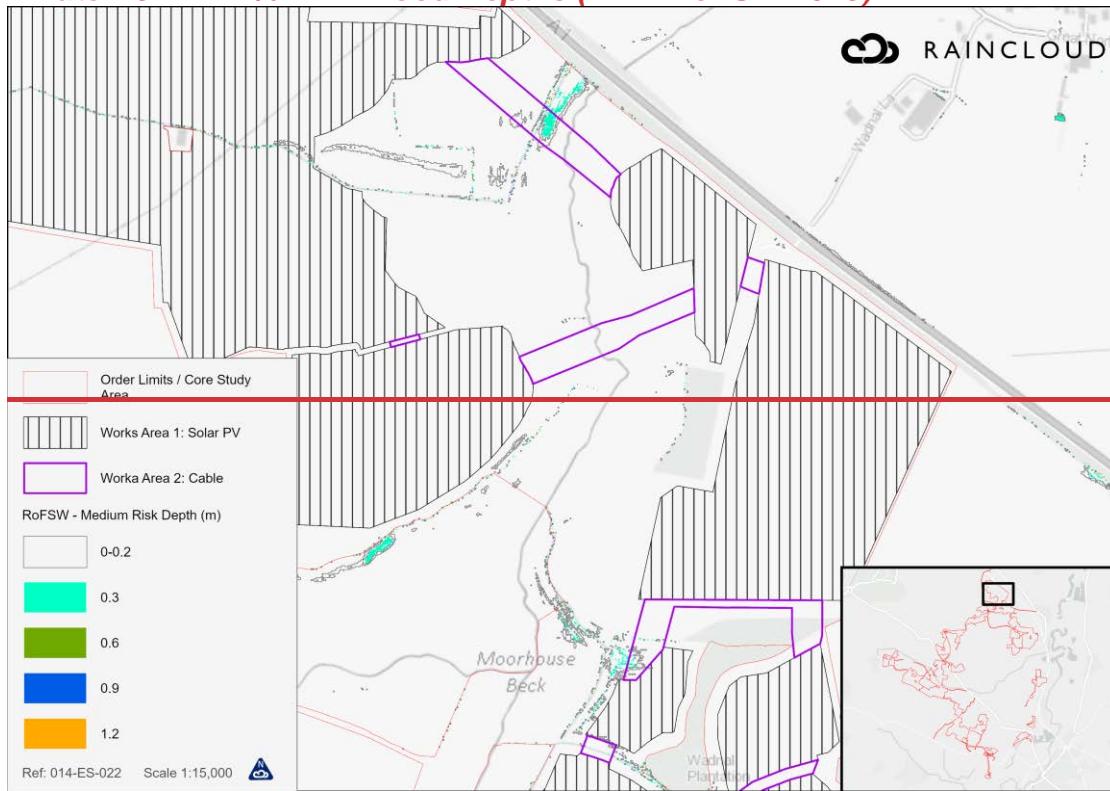
A9.1.1.7A9.1.1.8 PLUVIAL FLOODING

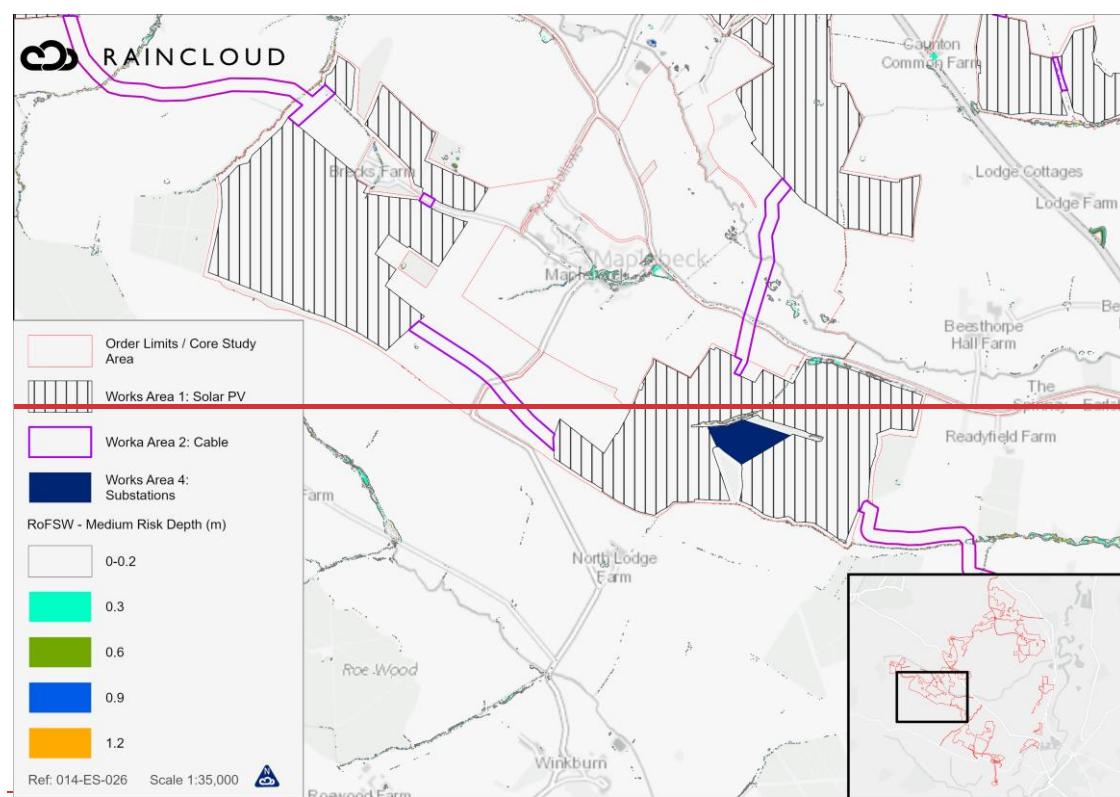
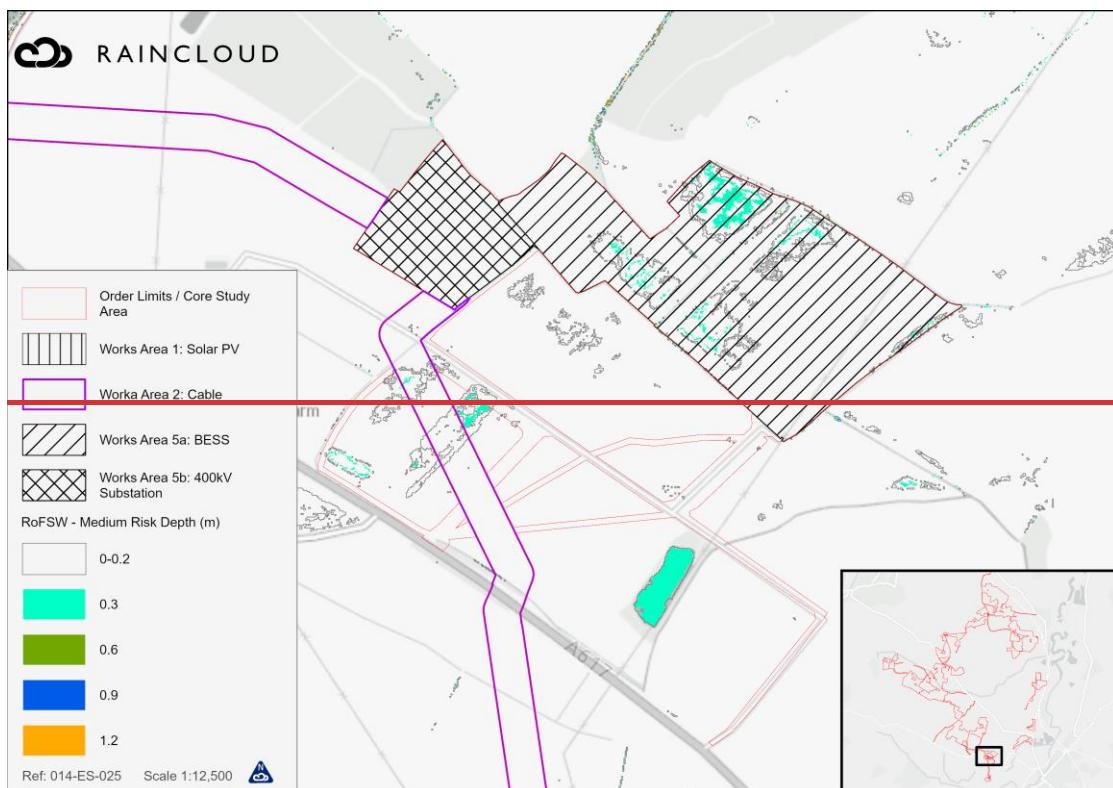
³⁵³⁷ The Flood Risk Assessments: Climate Change Allowances Guidance (Environment Agency 2022)²⁰ state that 'for modelling large areas (larger than 5 square kilometres) with rural land use, direct rainfall modelling is unlikely to be appropriate'. As such, the initial constraints process used the best available dataset, which is the EA pluvial flood depth datasets (Risk of Flooding from Surface Water 2025), which do not apply a CC allowance, as shown in [PlateFigure A9.1.65 in Appendix D](#).

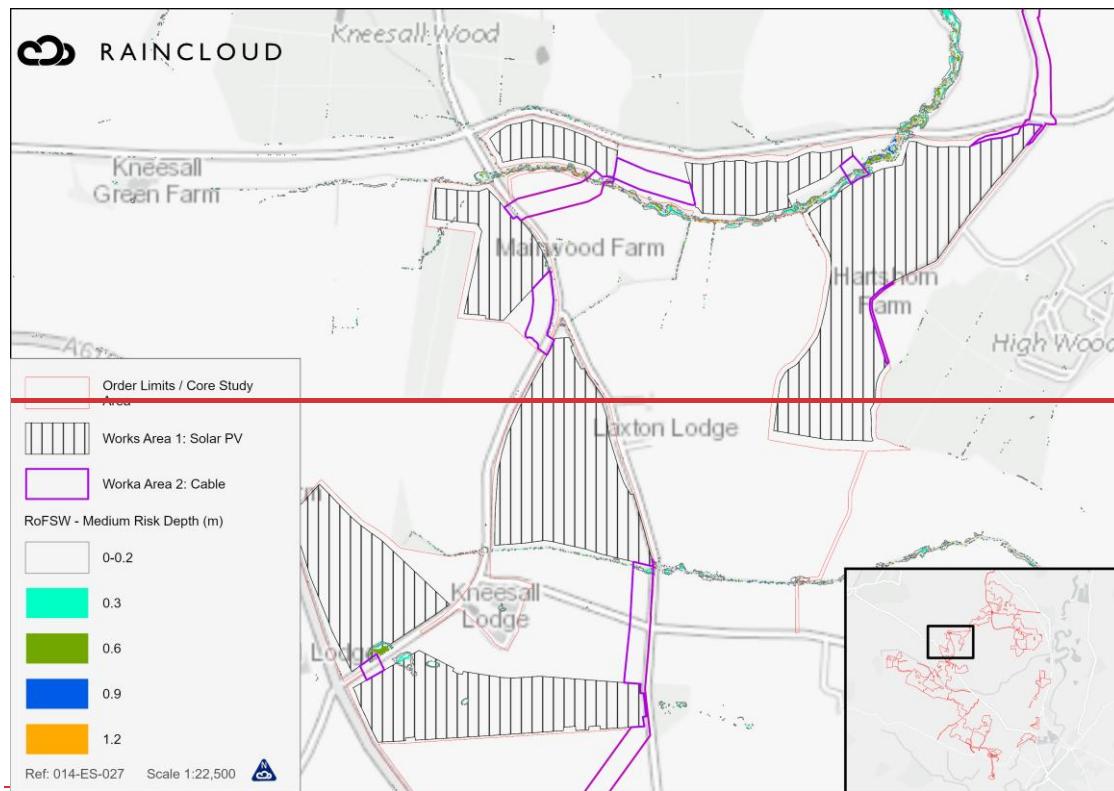

¹⁷ <https://environment.data.gov.uk/asset-management/index.html>

¹⁸ <https://publicaccess.newark-sherwooddc.gov.uk/online-applications/applicationDetails.do?activeTab=documents&keyVal=MZPFEZLB08200>

¹⁹ <https://environment.data.gov.uk/asset-management/index.html>



²⁰ <https://www.gov.uk/guidance/flood-risk-assessments-climate-change-allowances>



Plate A9.1.6: 1 % AEP Pluvial Flood Extents



[3638](#) Depths are shown on Figure A9.6 in [Plate A9.1.7 Appendix D](#) for specific areas of the CSA.

Plate A9.1.7: 1 % AEP Flood Depths (EA – RoFSW 2025)

³⁷³⁹Pluvial flood depths and flow routes at Carlton-on-Trent (amongst other locations) have been verified by direct rainfall method (DRM) 2D pluvial flood modelling in Flood Modeller Pro using the parameters outlined in Table A9.1.1.

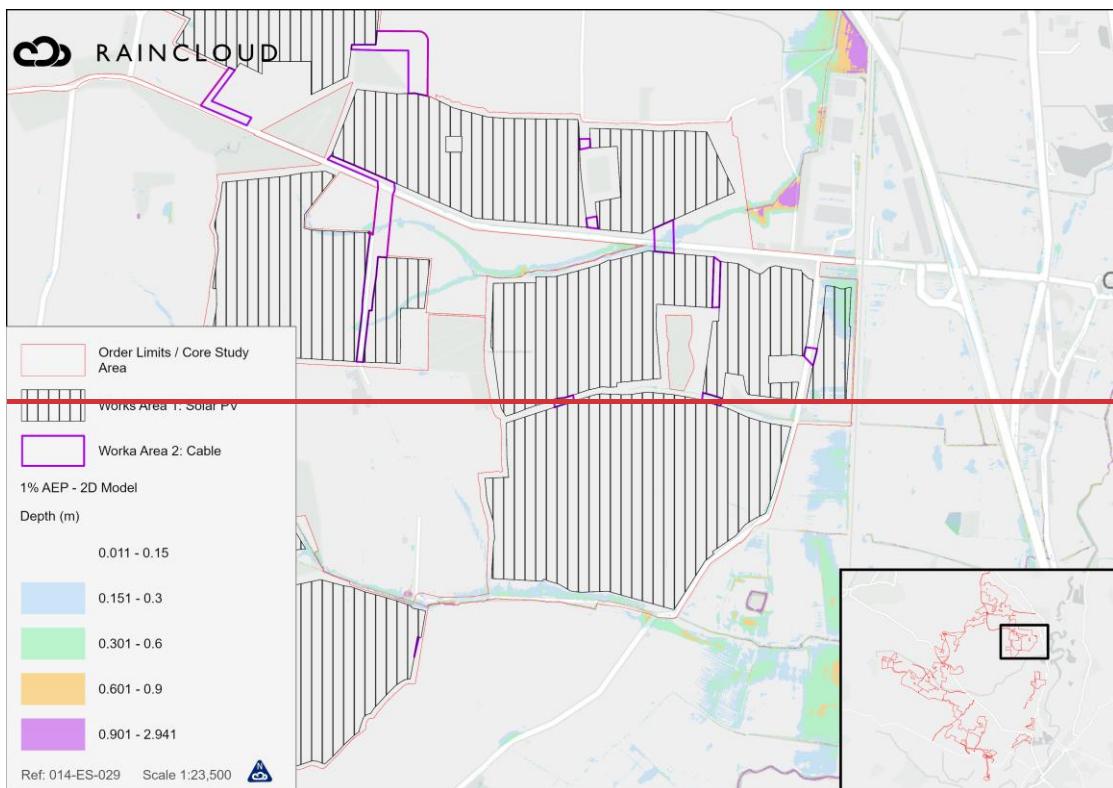
Table A9.1.1: 2D Pluvial Flood Model Parameters – Carlton-on-Trent

Return Period	1 % AEP
Storm Duration	3 hours
Season	Summer
FEH Rainfall Design Depth	55.314 mm
Rural runoff	55 %
CC Allowance – Central 2070s²¹	25 %
Drainage / Infiltration Allowance (0 or 12 mm)	0 mm ²²
Manning's n Values	<ul style="list-style-type: none"> Floodplain - mature row crops²³: 0.035; Roads: 0.01; Buildings: 0.01; and Woodland: 0.1.
Model Timestep	0.5 second

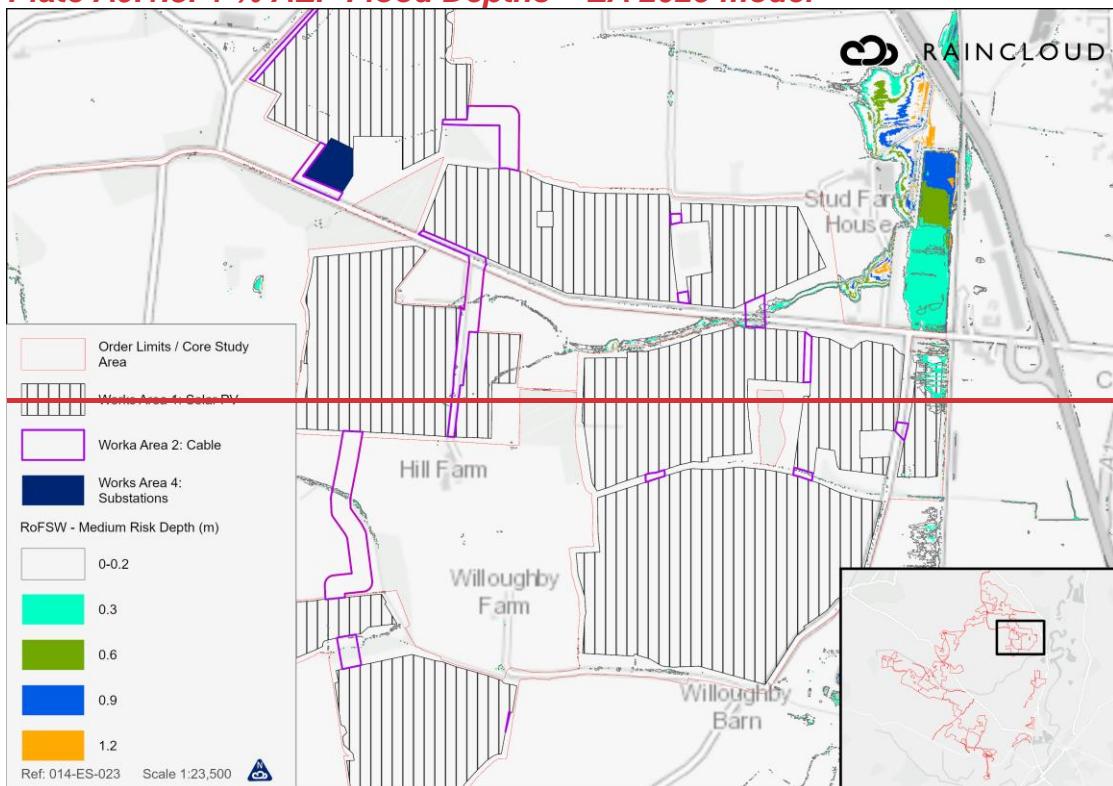
²¹ <https://environment-test.data.gov.uk/hydrology/climate-change-allowances/rainfall?mgmtcatid=3052>

²² Monte Carlo approach used to derive the national default 12 mm per hour drainage rate value displayed due to rural catchment

²³ Manning's n for Channels (Chow, 1959)


Grid Resolution	2 m
Height Data	1 m LiDAR, 2022
Data Stamping (OS MasterMap)	<ul style="list-style-type: none">Buildings – Raise +2 m; andRoads – Depress -0.1 m.
Mass Error	0.0%
Largest Courant (Cr) Value	3.5

[3840](#) Storm durations used in modelling reflect the nature of the catchment assessed. As the CSA is predominantly rural, the peak 1 % AEP event has been assessed in accordance with the parameters outlined within the Table in Section 4.2.1 of the EA's *What is the Risk of Flooding from Surface Water map?* Report (version 2.0 April 2019).


[3941](#) An Active area for the 2D domain was chosen based on the area of interest, i.e., areas modelled to flood on the EA's pluvial flood depth datasets (Risk of Flooding from Surface Water Depth).

[4042](#) Outputs from Flood Modeller, using the Alternating Direction Implicit (ADI) solver on a 2 m grid resolution, show a good correlation with the EA's modelling (also see [PlateFigure A9.1-76](#)) for the area upslope of Carlton-on-Trent, as shown in [PlateFigure A9.1-87 in Appendix D](#).

Plate A9.1.8: 1 % AEP Flood Depths – Raincloud 2D Modelling

Plate A9.1.8: 1 % AEP Flood Depths – EA 2025 model

A9.1.1.8A9.1.1.9 RESERVOIR FLOODING

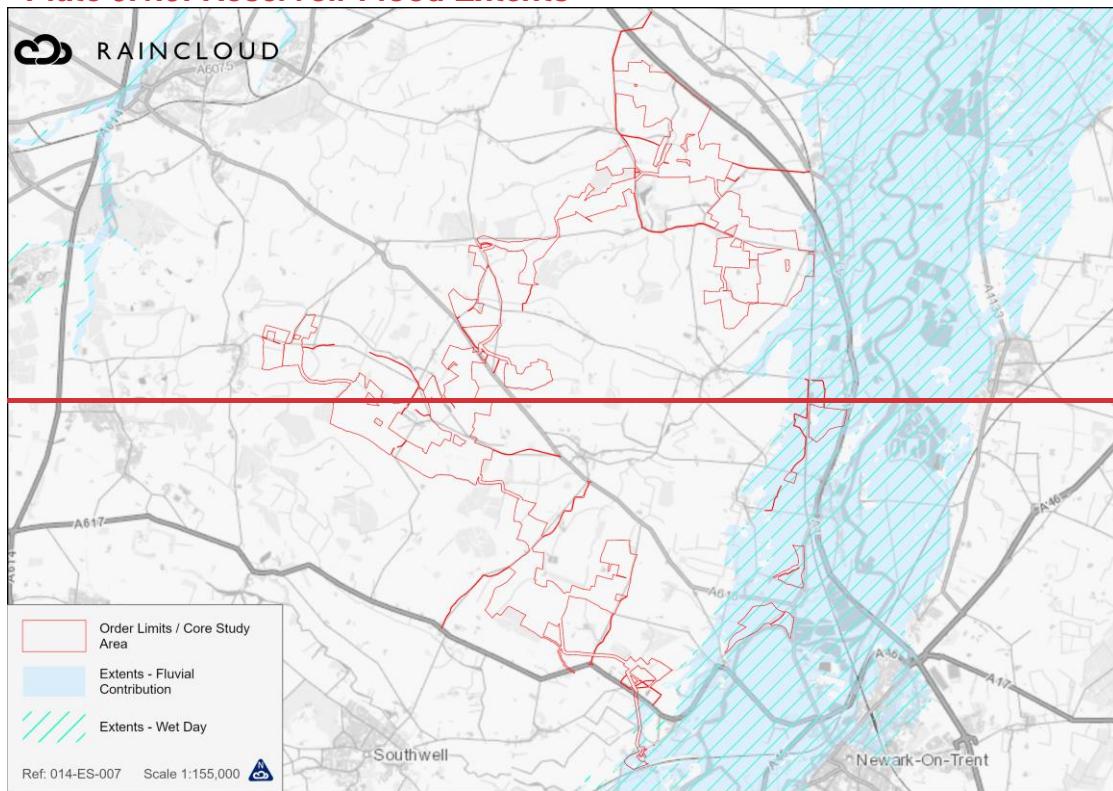

⁴⁴³The eastern section of the CSA is modelled to flood should there be a breach in the retaining walls of the reservoirs outlined upstream of the CSA, specifically those identified in Table A9.1.2.

Table A9.1.2: Reservoirs which could affect the CSA in a breach event

Reservoir name	Approx. Distance to CSA
Blithfield	75 km south west
Carsington	45 km west
Derwent	59 km north west
Foremark	51 km south west
Howden	59 km north west
Ladybower	48 km north west

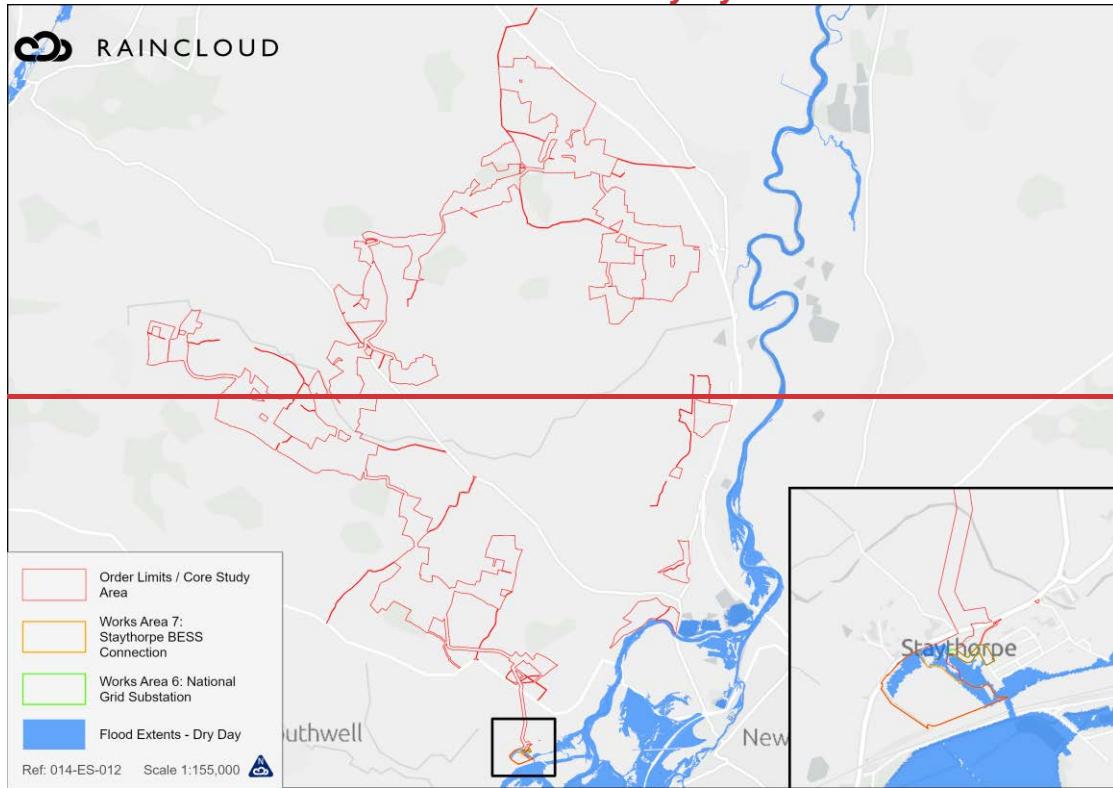

⁴⁴⁴The extent of reservoir flooding which interacts with the CSA largely follows the corridor of the River Trent. The Fluvial Contribution and Wet Day scenarios are shown in [PlateFigure A9.1.98 in Appendix D](#).

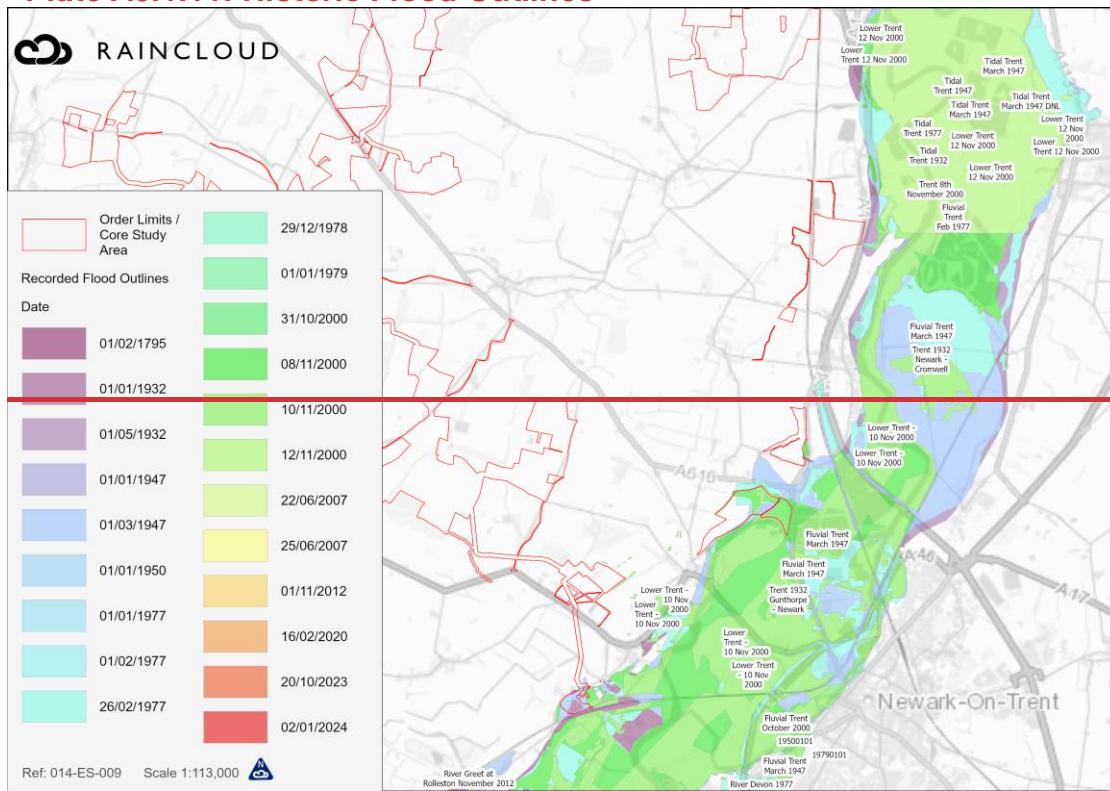
Plate 9.1.9: Reservoir Flood Extents

⁴⁴⁵Should there be a breach of reservoir retaining walls when river levels are within normal range, then only a very minor area of the CSA, in proximity to Work Area 7, Consented Staythorpe BESS and Connection, is modelled to be within the flood extent, as shown in [PlateFigure A9.1.109 in Appendix D](#).

Plate A9.1.10: Reservoir flood extents – Dry Day Scenario

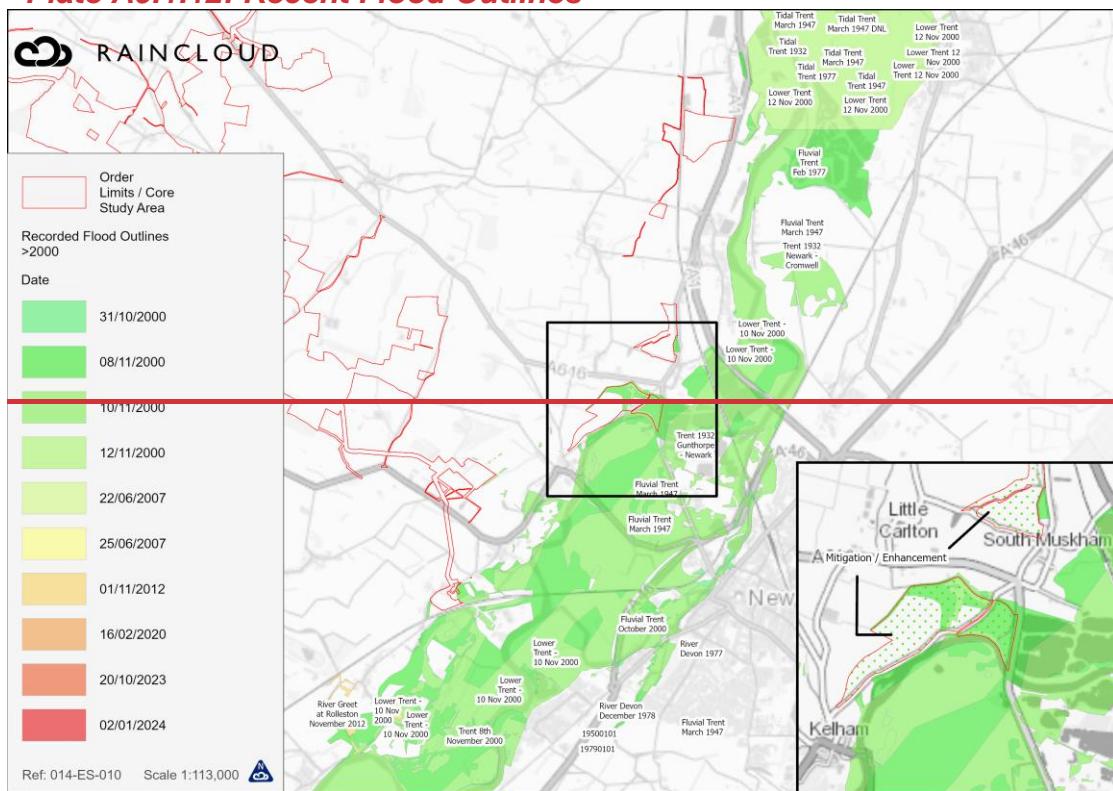
[4446](#) The SFRA identifies reservoirs within the administrative area of the LLFA and these are noted to be downstream of the CSA, and are listed in Table A9.1.3.

Table A9.1.3: Reservoirs downstream of the CSA


Reservoir name	Approx. distance to CSA	Catchment
Ash Buffer Lagoon, Besthorpe	3.1 km east	River Trent
Rufford Lake	4.1 km west	River Maun
Sherwood Forest Lake	4.8 km west	River Maun
South Farm Reservoir 1	10.2 km north west	River Maun
South Farm Reservoir 2	10.2 km north west	River Maun
Thoresby Lake (Upper)	11.2 km north west	River Maun
Thoresby Lake	11.1 km north west	River Maun

A9.1.1.9A9.1.1.10 FLOOD HISTORY

[4547](#) Anecdotal evidence suggests that the eastern section of the CSA has previously flooded from fluvial sources, principally the River Trent.



[4648](#) The EA historic flood outline dataset also indicates that the CSA has previously flooded, as shown in [PlateFigure A9.1.1110 in Appendix D](#).

~~Plate A9.1.11: Historic Flood Outlines~~

4749 Only minor areas of the CSA, and no areas of Work Area 1 – PV Arrays or the substations or BESS areas, have flooded since 2000, as shown in [Plate Figure A9.1.1211 in Appendix D](#).

Plate A9.1.12: Recent Flood Outlines

4850 From public feedback, attendance at Parish Council meetings and NCC's Section 19 reports (reports which investigate significant flood events), it is evident that areas surrounding the CSA have previously flooded from pluvial sources, with the following communities affected:

- Maplebeck²⁴;
- Sutton-on-Trent^{25,26};
- Carlton-on-Trent²⁷;
- Weston; and
- Caunton²⁸.

4951 2D direct rainfall modelling has been undertaken for this FRA in Flood Modeller to verify surface water flow pathways and predict flood depths during a range of storm return periods for several communities in proximity to the CSA.

5052 The area around Maplebeck was initially investigated as an area of concern following feedback from the Parish Council regarding the existing pluvial flood risk and the effects of Storm Babet (October 2023).

The Flood Modelling exercise for Maplebeck is discussed in Section A9.1.3.2 of this FRA.

A9.1.1.10 A9.1.1.11 FLOOD STUDIES

5153 Following feedback received from the EA during the Scoping stage, outputs from a number of flood studies within the Wider Study Area were obtained, including:

- Tidal Trent, Jacobs, (2023);
- Trent and Tributaries at Newark SFRM2 (2011);
~~• Halcrow, July 2011 plus the EA climate change (2020 rerun);~~
- Mill Dam Dyke, Tidal Trent Tributaries, Jeremy Benn Associates (JBA) (2022);
- River Greet, Nottingham Tributaries SFRM, JBA (2014);
- River Maun at Mansfield, HR Wallingford (2021); and
- Slough Dyke, Tidal Trent Tributaries, JBA (2022).

5254 Outputs from the River Maun, Slough Dyke and Mill Dam Dyke do not encroach on the CSA and are therefore not discussed further within this FRA.

55 Catchments for each of the flood studies is shown on Figure A9.12 in Appendix D.

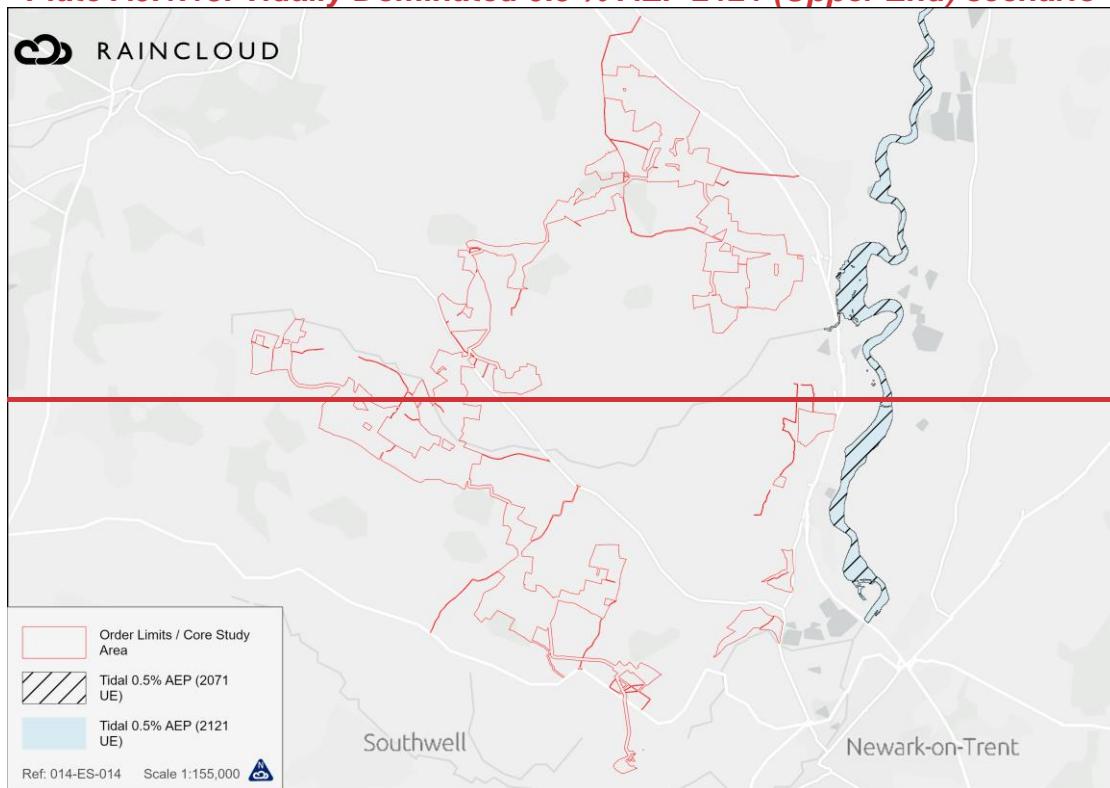
56 Where the Development is located in Flood Zone 1 and is sufficiently distant from a watercourse e.g. not in proximity to The Beck and Moorhouse Beck, national scale modelling has been utilised and validated against the EA's CCP1 climate change dataset (23 % CC uplift) to assess the risk of flooding in those areas.

²⁴ <https://www.nottinghamshire.gov.uk/media/fbznap5u/maplebeck-s19-storm-babet-oct-2023.pdf>

²⁵ <https://www.nottinghamshire.gov.uk/media/vvhcdwl/c/sutton-on-trent-s19-storm-babet-oct-2023.pdf>

²⁶ <https://www.nottinghamshire.gov.uk/media/1529265/suttonontrentsection19flooding.pdf>

²⁷ <https://www.nottinghamshire.gov.uk/media/1494226/carlton-on-trent-section-19-report.pdf>


²⁸ <https://www.nottinghamshire.gov.uk/media/yqjcq1z/caunton-s19-storm-babet-oct-2023.pdf>

57 Watercourses which interact with the Order Limits are not close enough to be influenced by other watercourses during a flood event, either in isolation or if they were to flood at the same time. It should also be noted that the River Trent is not a rapid response catchment due to the wide area which it drains, meaning the smaller tributaries which are located within and close to the Order Limits will transfer water downstream more rapidly than the River Trent and therefore its influence on water levels within the tributaries is limited. Structures, such as the A1, East Coast Mainline Railway embankments and culverts / bridges also limit the influence and flood extent of the River Trent.

A9.1.1.11 A9.1.1.12 TIDAL TRENT

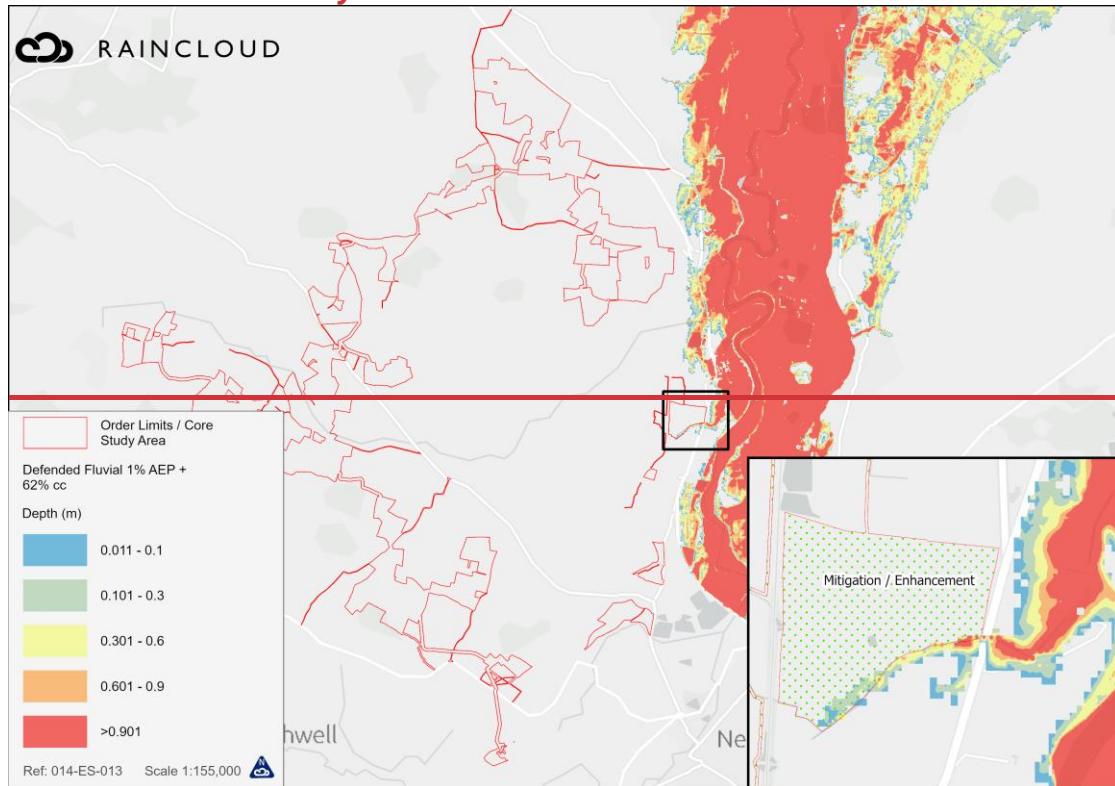
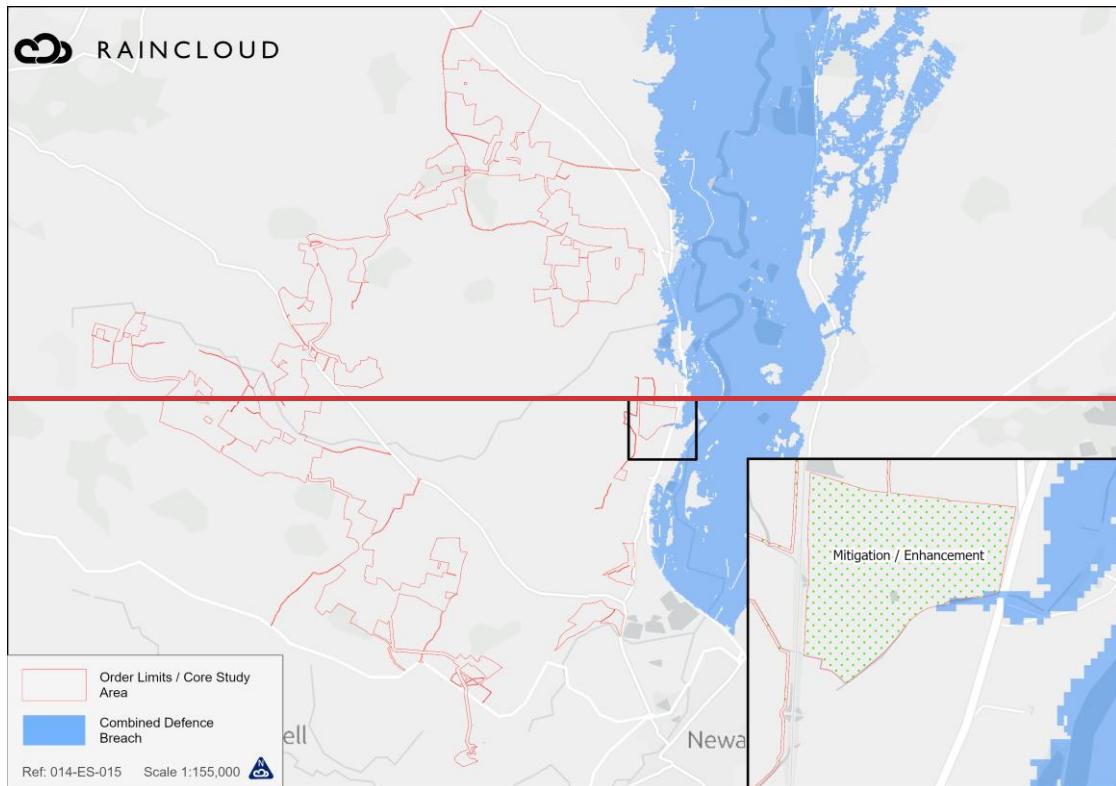

5358 Outputs from the Tidal Trent, Jacobs, (2023) Flood Study show that the extents for the tidally dominated 0.5 % AEP 2021 (Upper End) scenario do not encroach upon the CSA, as shown in [PlateFigure A9.1.13 in Appendix D](#).

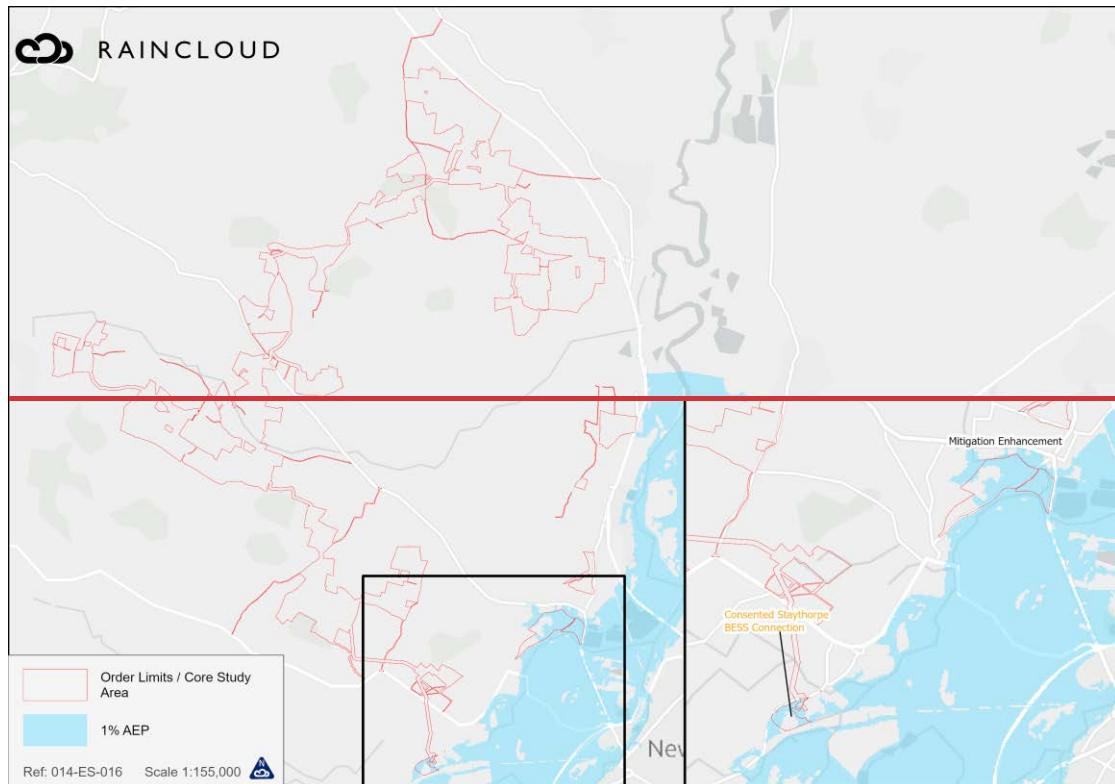
Plate A9.1.13: Tidally Dominated 0.5 % AEP 2121 (Upper End) scenario

5459 The fluvially dominated 1 % AEP + 39 % CC (2050s epoch) and 62 % CC (for the 2080s epoch (2070 – 2125)) defended scenario outputs show that a minor section of Work Area 3, Mitigation / Enhancement, shown to be diverse grassland on the Sitewide Plan of the LEMP, would flood to a depth of 0.6 m, as shown in [PlateFigure A9.1.14 in Appendix D](#).


Plate A9.1.14: Fluvially Dominated 1 % AEP + 62 % CC scenario

[5560](#) No other work areas are located in the fluvially dominated 1 % AEP + 62 % CC defended scenario extent.

[5601](#) The Combined Breach of defences outline shows that whilst several breach scenarios marginally encroach upon the eastern section of the CSA, no flood outline extends into any of Work Area other than Work Area 3, Mitigation / Enhancement, proposed to be diverse grassland, as shown in [PlateFigure A9.4-15 in Appendix D](#).


Plate A9.1.15: Combined Tidal Breach Outline

A9.1.1.12A9.1.1.13 FLUVIAL TRENT

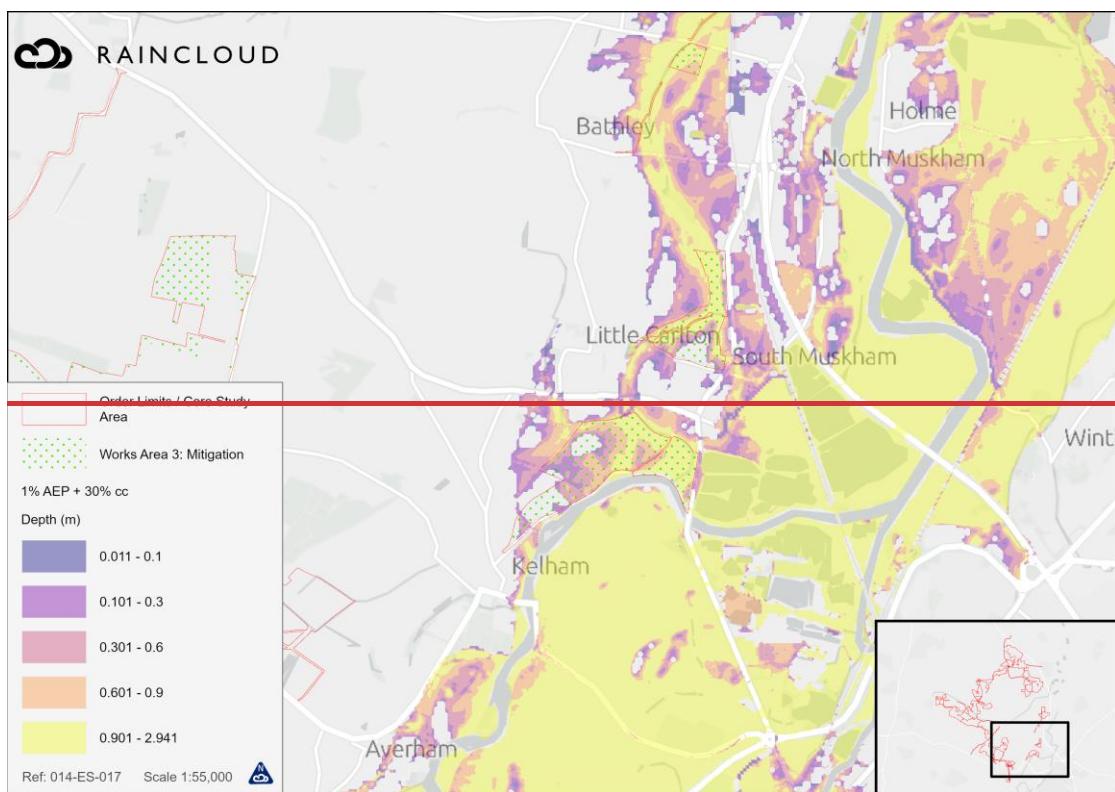
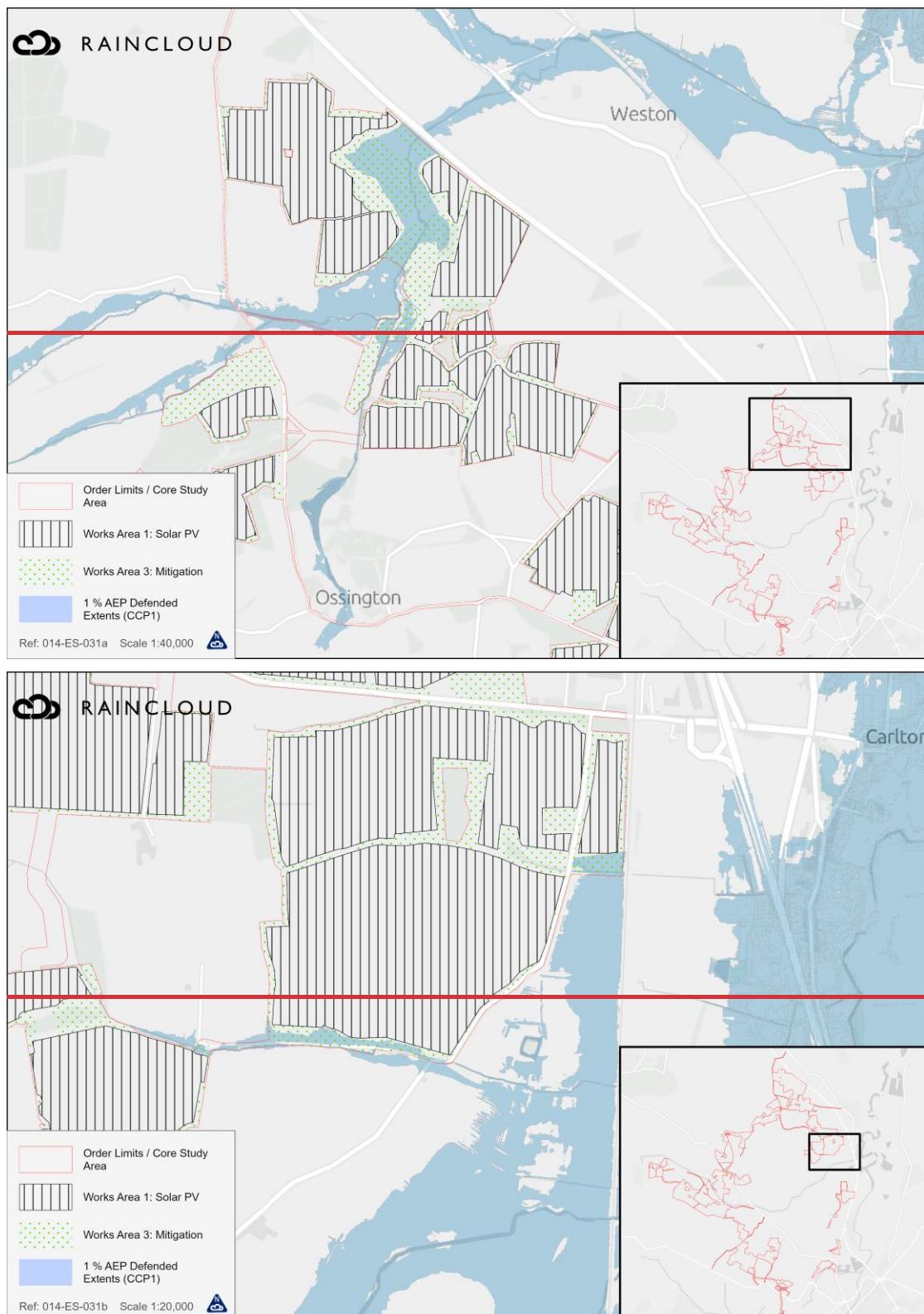

⁵⁷⁶²Outputs from the Trent and tributaries at Newark SFRM2 Flood Study show that the extents of the 1 % AEP event do not encroach upon the Solar PV area (Work Area 1) and marginally encroaches on the Consented Staythorpe BESS and Connection (Work Area 7) and National Grid Substation Connection Point (Work Area 6) as shown on [PlateFigure A9.4.16 in Appendix D](#).

Plate A9.1.16: 1 % AEP – River Trent

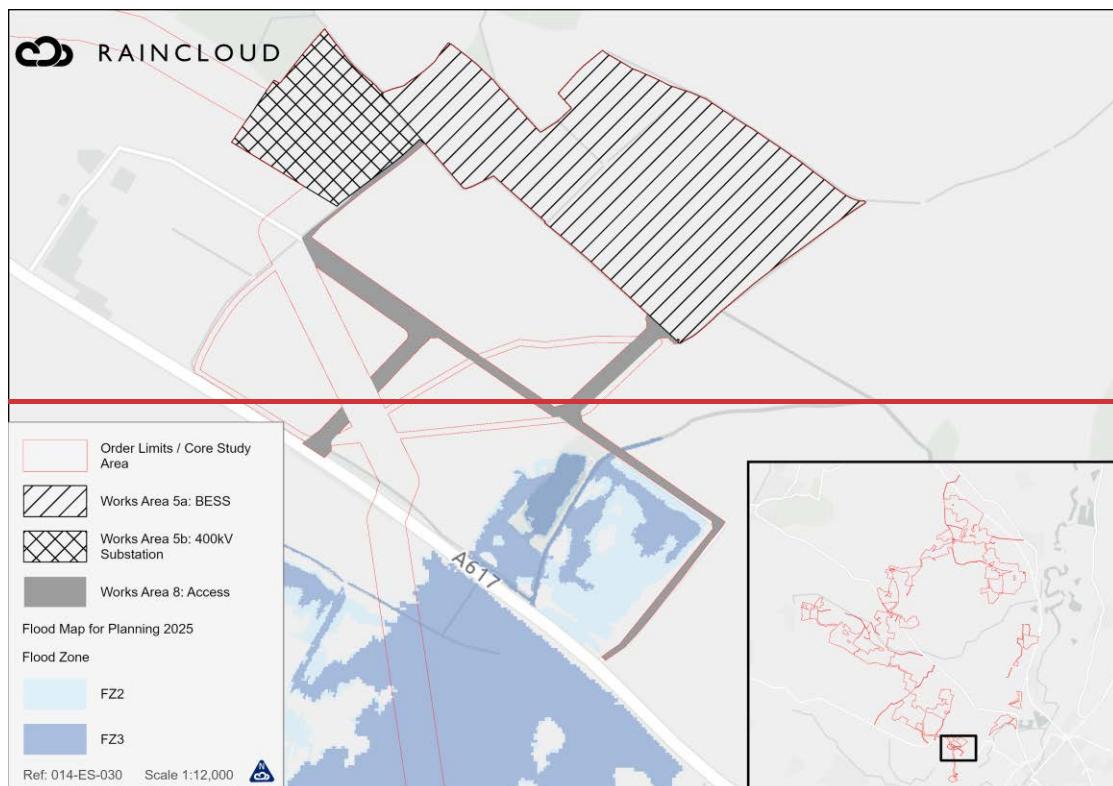
[5863](#) As the Development will have an operational life of 40 years the Development is required to be assessed against the 1 % AEP + 23 % CC allowance in accordance with 2050s Higher Central allowance for the Lower Trent and Erewash Management Catchment. In the absence of a modelling study incorporating a 23 % CC allowance the 1 % AEP + 30 % CC event has been used as a proxy and the extents encroach further into the eastern section of the CSA and specifically into Work Area 3, Mitigation / Enhancement, Work Area 6, National Grid Staythorpe Substation, and Work Area 7, Consented Staythorpe BESS and Connection compared to the 1 % AEP as shown in [PlateFigure A9.4.17 – in Appendix D.](#)


~~Plate: A9.1.17: 1 % AEP + 30 % CC – River Trent~~

[5964](#) Work Area 1 (Solar PV Area) has been designed to avoid the 1 % AEP + 30 % CC extent, based on the illustrative design.

[6065](#) [PlateFigure 9.4.18 in Appendix D](#), shows that new above ground development in Work Areas 1 and 4 (e.g. Solar PV, substations etc.) have been located outside the 1 % AEP 2036-2069 flood extent.

Plate 9.1.18: 1 % AEP Defended Extents (CCP1)

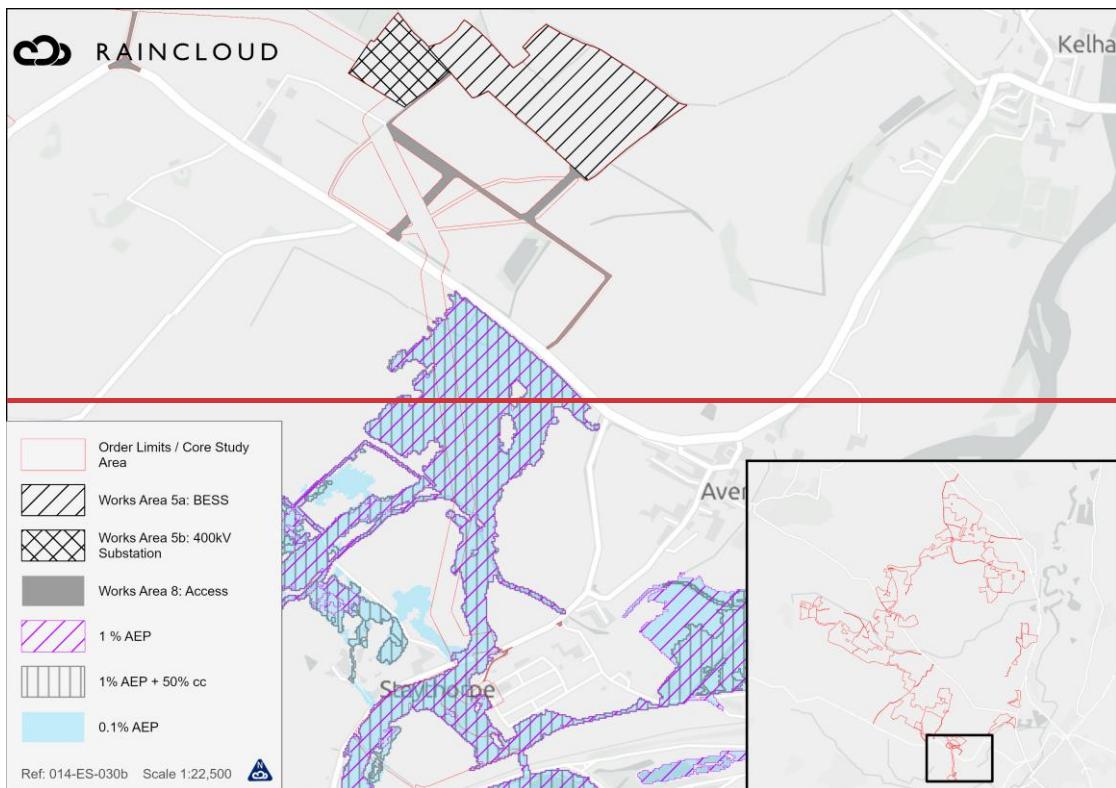

[6466](#) The Canal and River Trust are currently in the process of building two variable height weir structures at points along the River Trent, with these being used to generate hydroelectric power. Hydroelectric schemes will have a failsafe whereby the weir can be lowered during flooding events, and therefore the schemes should have no impact on flooding to the

Development. This failsafe mechanism means the weirs pose no flood risk to the Development and are not considered further within this FRA.

A9.1.1.13A9.1.1.14 RIVER GREET

62—The Flood Map for Planning shows that the eastern access track to the BESS/400 kV Compound (Work Area 5a and 5b) borders Flood Zone 2 and 3, as shown in Plate A9.1.**19.**

Plate A9.1.19: Flood Zones in south of CSA



67 39.

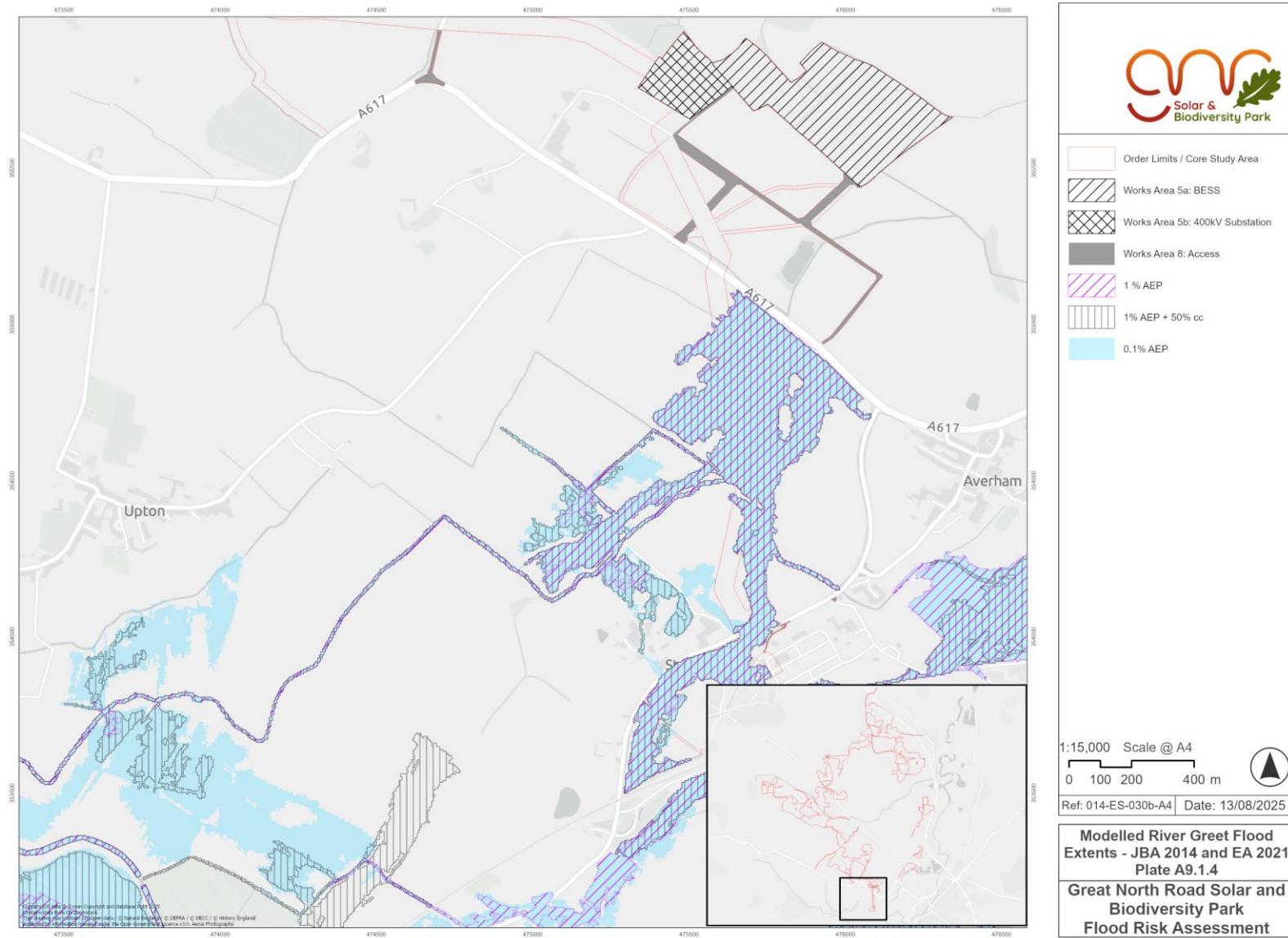

63 Outputs from the River Greet Flood Study (JBA 2014) and the River Greet Climate Change Scenarios, (EA 2021) show that the 1 % AEP, 1 % AEP + 50 % CC and the 0.1 % AEP events only encroach upon the southern section of the CSA, specifically the Consented Staythorpe BESS (Work Area 6) and National Grid Substation Point of Connection (Work Area 7), but does not encroach upon the Solar PV Arrays (Work Area 1), Intermediate Substations (Work Area 4) and BESS (Work Area 5a), as shown in Plate A9.1.20.

Plate A9.1.20: Modelled River Greet Flood Extents – JBA 2014 and EA 2021

68

4.

6469 As such the discrepancy between the pre-NaFRA2 Flood Map for Planning and the outputs from the River Greet flood studies was queried with the EA who responded stating “*We are sorry that we cannot explain why Flood Zone 3 is of a lesser extent than the 2004 1 % AEP JFLOW outline to the north west of Averham. Flood Zone 3 in the wider area has utilised part of the River Greet 2008 model but this is of a smaller extent than the current Flood Zone 3 as shown below (Flood Zone 3 in darker blue and the 1% AEP 2008 River Greet model in lighter blue). The Flood Zone outline does not align to a modelled outline or recorded flood outline. The Flood Zones in this area were last updated in 2014 and unfortunately our records do not answer your question.*” (see Appendix A).

6570 Following a meeting with the EA, it was suggested that whilst the source of the discrepancy could not be fully ascertained, the source of flooding could possibly be attributed to flood waters from Car Dyke / Pingley Dyke. To verify this Raincloud undertook a 1D-2D linked hydrological model of the watercourse in 2024, derived from LiDAR. The model was updated in March 2025 to include a culvert carrying the A617, following consultation comments on the Preliminary Environmental Information Report (PEIR) from the EA.

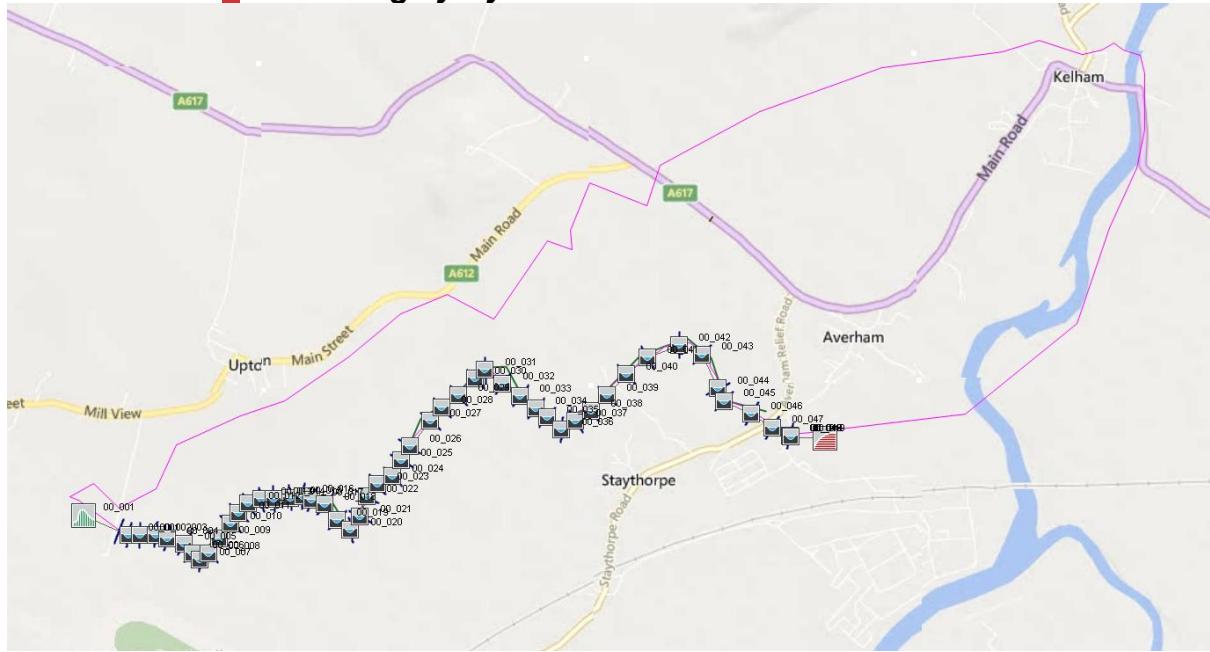
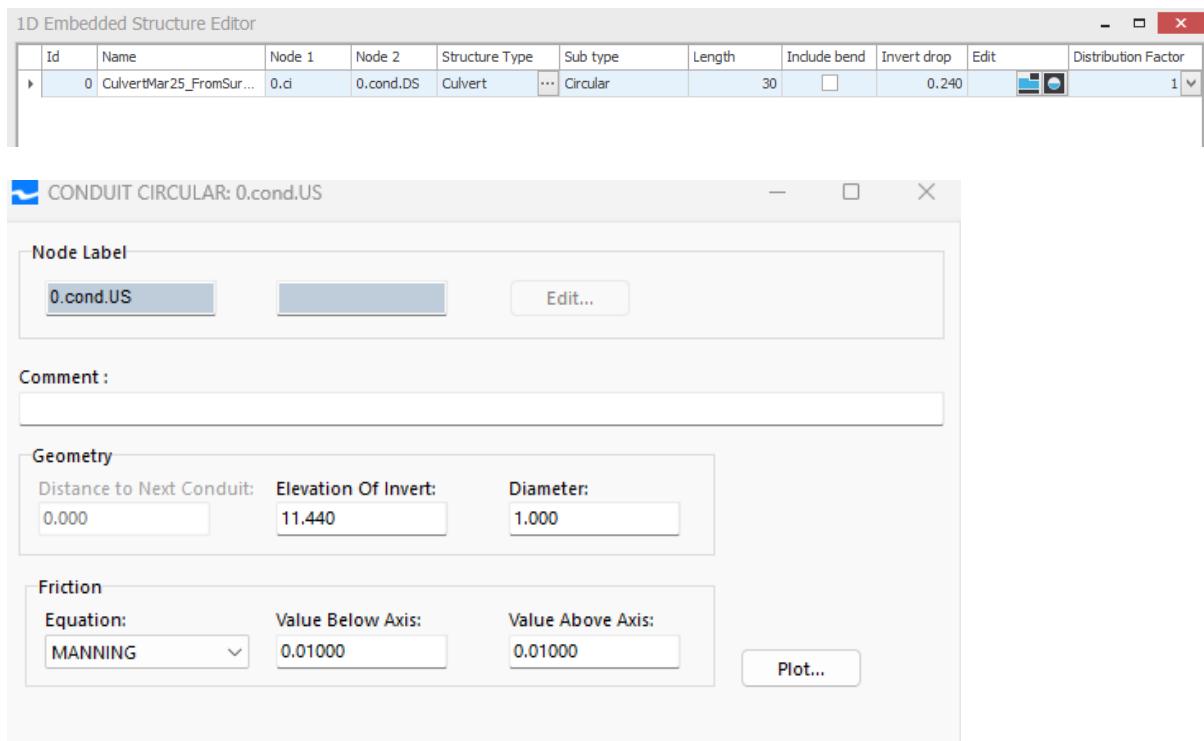

6671 The culvert was surveyed on 28th March 2025 by Greenhatch Group and is shown in Plate A9.1.215.

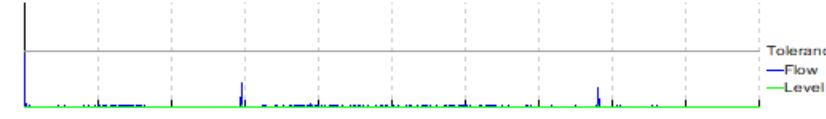
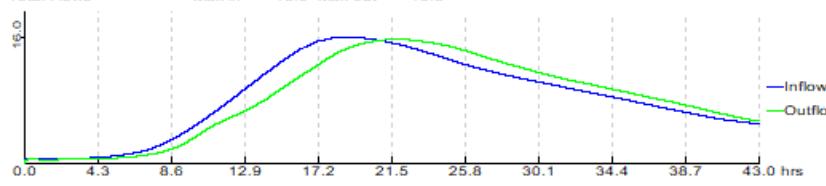
Plate A9.1.215: Culvert under A617 (southern side)

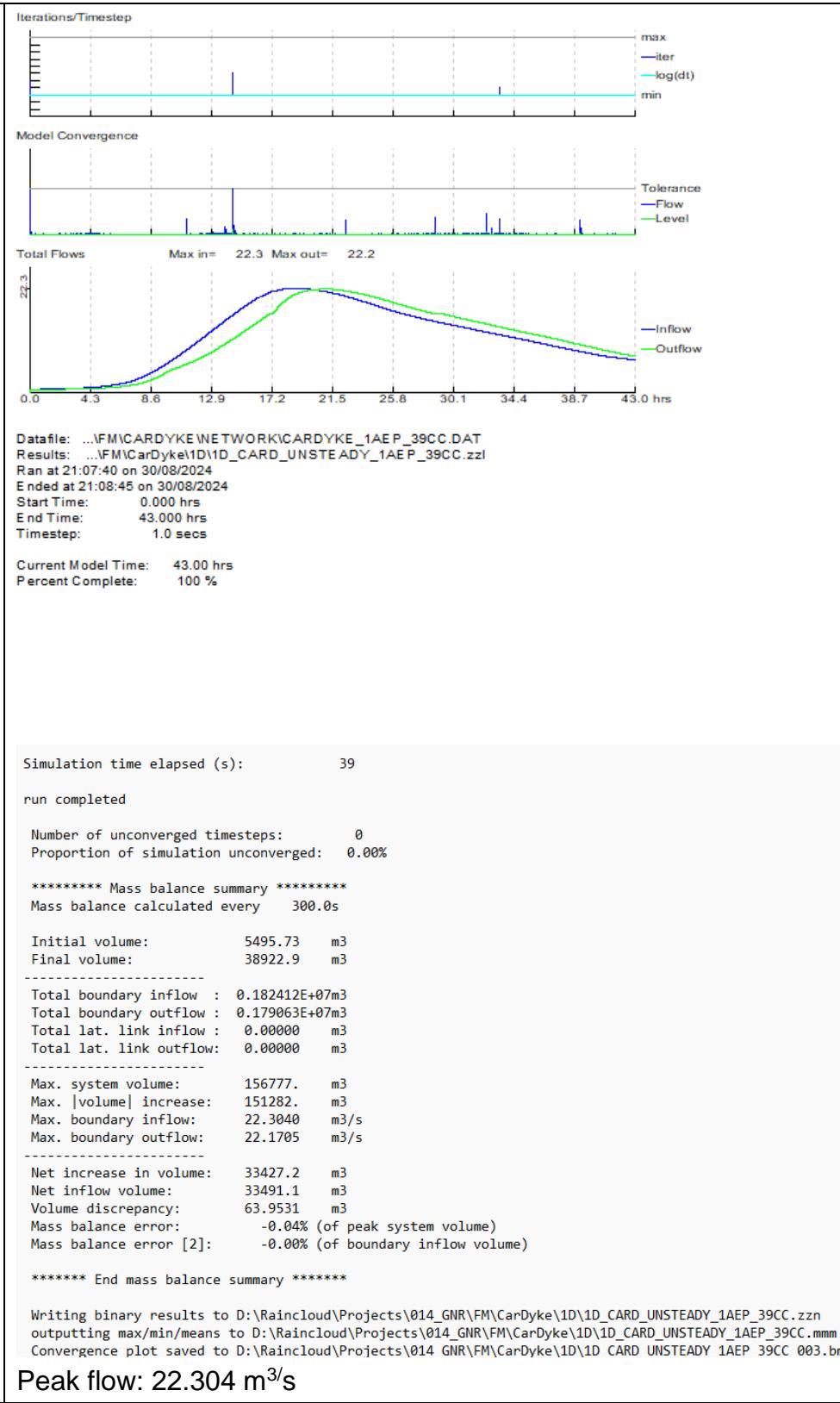


[6772](#) Cross sections and the active model area (pink outline) are shown in Plate A9.1.226, while the model parameters in provided in Table A9.1.4.

Plate A9.1.226: Car / Pingely Dyke – Model Cross Sections

6873 The culvert has been modelled using the following parameters which are derived from survey:



The image shows two software dialog boxes. The top box is titled '1D Embedded Structure Editor' and contains a table with the following data:


Id	Name	Node 1	Node 2	Structure Type	Sub type	Length	Include bend	Invert drop	Edit	Distribution Factor
0	CulvertMar25_FromSur...	0.ci	0.cond.DS	Culvert	... Circular	30	<input type="checkbox"/>	0.240		1

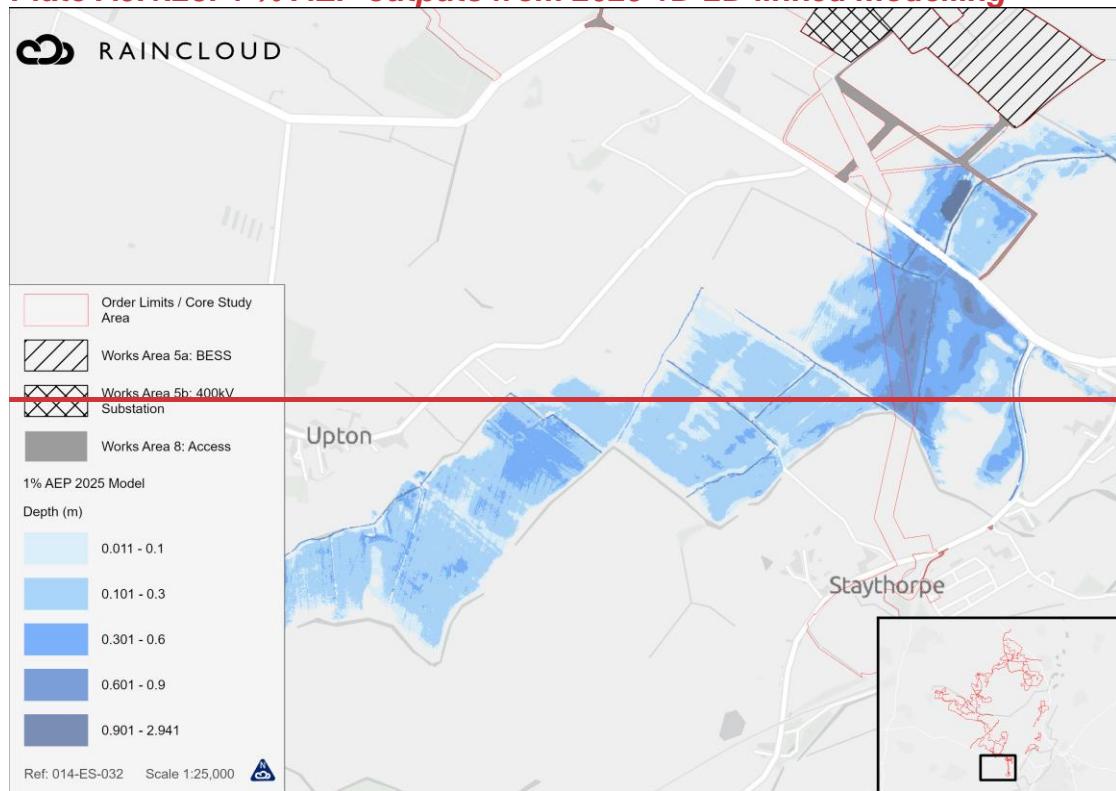
The bottom box is titled 'CONDUIT CIRCULAR: 0.cond.US' and contains the following settings:

- Node Label:** 0.cond.US
- Comment:** (empty)
- Geometry:**
 - Distance to Next Conduit: 0.000
 - Elevation Of Invert: 11.440
 - Diameter: 1.000
- Friction:**
 - Equation: MANNING
 - Value Below Axis: 0.01000
 - Value Above Axis: 0.01000

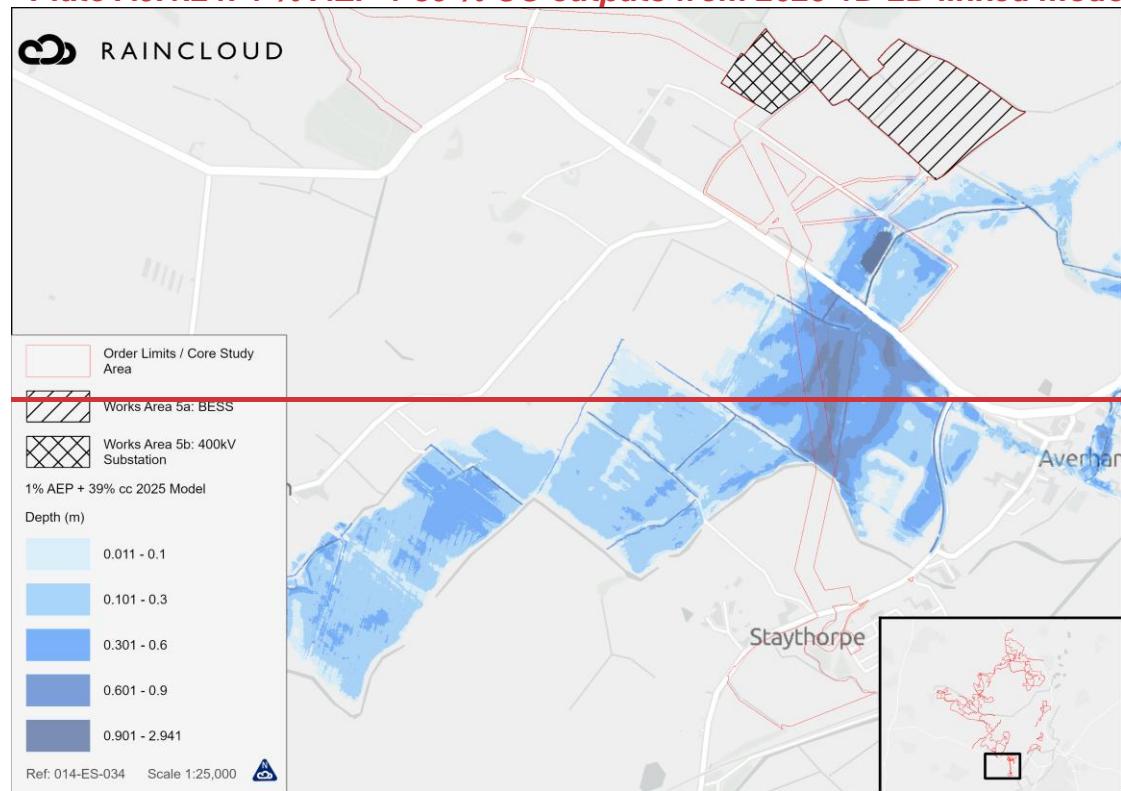
Table A9.1.4: 1D-2D modelling parameters

Return Period	1 % AEP
Storm Duration	43 hours
Season	Summer
FEH Hydrograph	<p>Iterations/Timestep</p> <p>Model Convergence</p> <p>Total Flows Max in= 16.0 Max out= 15.8</p> <p>Datafile: ...014_GNR\FM\CARDYKE\NETWORK\CARDYKE_1AEP.DAT Results: ...FM\CarDyke1D\1D_CARD_UNSTEADY_1AEP.zzn Ran at 21:02:40 on 30/08/2024 Ended at 21:03:48 on 30/08/2024 Start Time: 0.000 hrs End Time: 43.000 hrs Timestep: 1.0 secs Current Model Time: 43.00 hrs Percent Complete: 100 %</p> <p>Simulation time elapsed (s): 40</p> <p>run completed</p> <p>Number of unconverged timesteps: 0 Proportion of simulation unconverged: 0.00%</p> <p>***** Mass balance summary ***** Mass balance calculated every 300.0s</p> <p>Initial volume: 5495.73 m³ Final volume: 26133.9 m³</p> <p>-----</p> <p>Total boundary inflow : 0.131259E+07m³ Total boundary outflow : 0.129184E+07m³ Total lat. link inflow : 0.00000 m³ Total lat. link outflow: 0.00000 m³</p> <p>-----</p> <p>Max. system volume: 108661. m³ Max. volume increase: 103165. m³ Max. boundary inflow: 16.0460 m³/s Max. boundary outflow: 15.7780 m³/s</p> <p>-----</p> <p>Net increase in volume: 20638.2 m³ Net inflow volume: 20754.2 m³ Volume discrepancy: 116.078 m³ Mass balance error: -0.11% (of peak system volume) Mass balance error [2]: -0.01% (of boundary inflow volume)</p> <p>***** End mass balance summary *****</p> <p>Writing binary results to D:\Raincloud\Projects\014_GNR\FM\CarDyke\1D\1D_CARD_UNSTEADY_1AEP.zzn outputting max/min/means to D:\Raincloud\Projects\014_GNR\FM\CarDyke\1D\1D_CARD_UNSTEADY_1AEP.mmm Convergence plot saved to D:\Raincloud\Projects\014_GNR\FM\CarDyke\1D\1D_CARD_UNSTEADY_1AEP_005.bmp</p> <p>Peak flow: 16.046 m³/s</p>

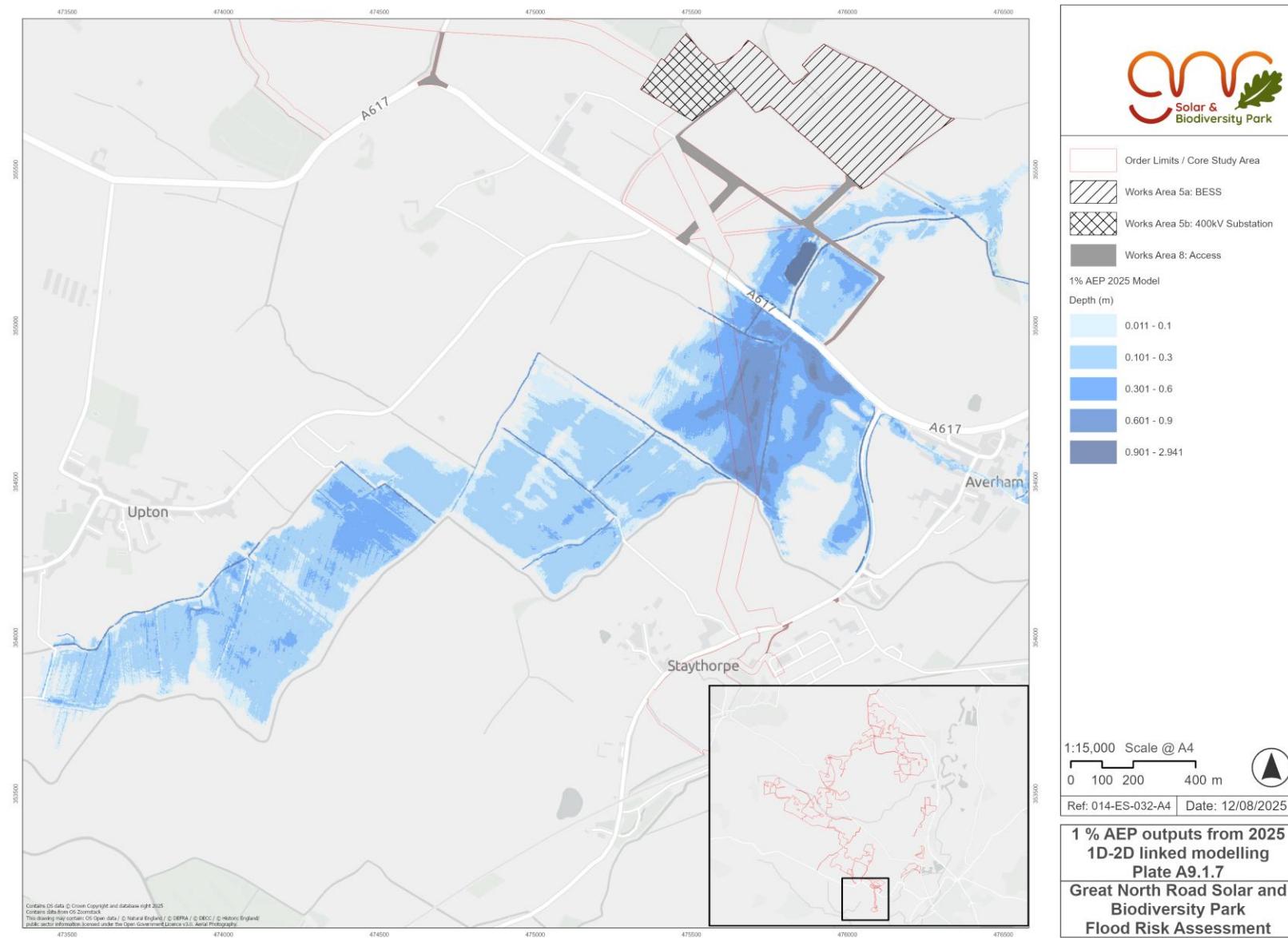
<p>CC Allowance – Central 2080s 39 %</p>	<p>Iterations/Timestep</p> <p>Model Convergence</p> <p>Total Flows Max in= 22.3 Max out= 22.2</p> <p>Inflow Outflow</p> <p>Datafile: ...\\FMCARDYKE\\NETWORK\\CARDYKE_1AEP_39CC.DAT Results: ...\\FMCARDYKE\\1D\\1D_CARD_UNSTEADY_1AEP_39CC.zzn Ran at 21:07:40 on 30/08/2024 Ended at 21:08:45 on 30/08/2024 Start Time: 0.000 hrs End Time: 43.000 hrs Timestep: 1.0 secs Current Model Time: 43.00 hrs Percent Complete: 100 %</p> <p>Simulation time elapsed (s): 39 run completed Number of un converged timesteps: 0 Proportion of simulation un converged: 0.00% ***** Mass balance summary ***** Mass balance calculated every 300.0s Initial volume: 5495.73 m³ Final volume: 38922.9 m³ ----- Total boundary inflow : 0.182412E+07m³ Total boundary outflow : 0.179063E+07m³ Total lat. link inflow : 0.00000 m³ Total lat. link outflow: 0.00000 m³ ----- Max. system volume: 156777. m³ Max. volume increase: 151282. m³ Max. boundary inflow: 22.3040 m³/s Max. boundary outflow: 22.1705 m³/s ----- Net increase in volume: 33427.2 m³ Net inflow volume: 33491.1 m³ Volume discrepancy: 63.9531 m³ Mass balance error: -0.04% (of peak system volume) Mass balance error [2]: -0.00% (of boundary inflow volume) ***** End mass balance summary ***** Writing binary results to D:\\Raincloud\\Projects\\014_GNR\\FM\\CarDyke\\1D\\1D_CARD_UNSTEADY_1AEP_39CC.zzn outputting max/min/means to D:\\Raincloud\\Projects\\014_GNR\\FM\\CarDyke\\1D\\1D_CARD_UNSTEADY_1AEP_39CC.mmm Convergence plot saved to D:\\Raincloud\\Projects\\014_GNR\\FM\\CarDyke\\1D\\1D_CARD_UNSTEADY_1AEP_39CC_003.bm</p> <p>Peak flow: 22.304 m³/s</p>
<p>Boundaries</p>	<p>Upstream: QT Downstream: Normal Depth</p>


Drainage / Infiltration Allowance (0 or 12 mm)	0 mm ²⁹ (Green-Ampt not applied)
Manning's n Values	<ul style="list-style-type: none"> Floodplain - mature row crops³⁰: 0.035 Channel - clean, straight, full stage, no rifts or deep pools: 0.03
Model Timestep	1 second
Grid Resolution	2 m
Height Data	1 m LiDAR, 2022
Data Stamping (OS MasterMap)	None
1D Mass Error	0.11 %
Largest Courant (Cr) Value	2.4

⁶⁹⁷⁴Flood extents from the initial analysis show a good correlation with the outputs from the NaFRA2 data (see Plate A9.1.19), whereby the embankment on the south side of A617 Road acts as a topographical barrier to flood flows, with flows constricted north via the culvert under the A617, as shown in [Plate Plates](#) A9.1.[237](#) and A9.1.[248](#).


²⁹ Monte Carlo approach used to derive the [national](#) default 12 mm per hour drainage rate value disappplied due to rural catchment

³⁰ Manning's n for Channels (Chow, 1959)


Plate A9.1.23: 1 % AEP outputs from 2025 1D-2D linked modelling

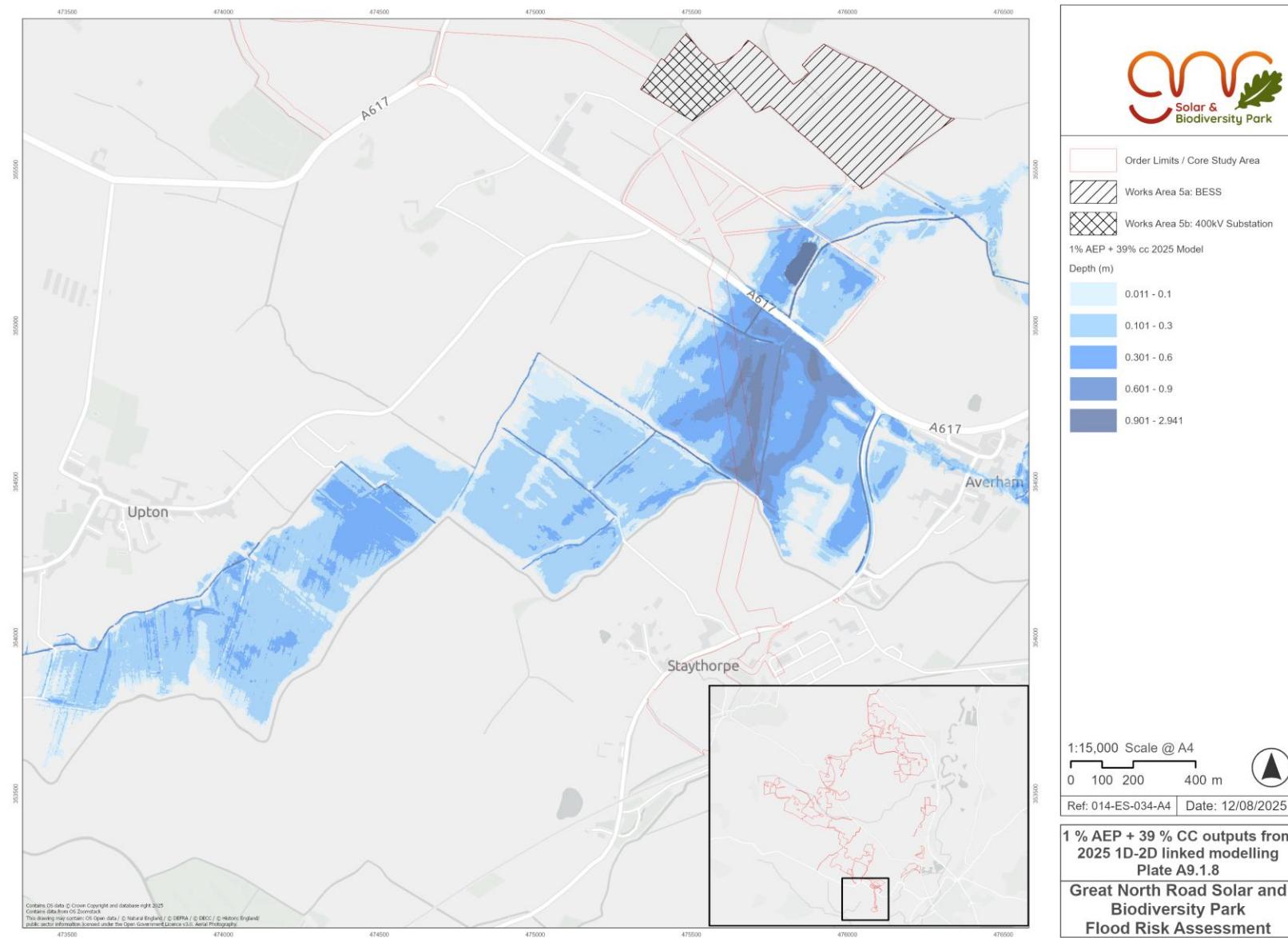


Plate A9.1.24: 1 % AEP + 39 % CC outputs from 2025 1D-2D linked modelling

75 Flood extents for the 1 % AEP and 1 % AEP +39 % CC do not encroach into Work Areas 5a or 5b.

A9.1.2 FLOOD RISK ASSESSMENT

A9.1.2.1 TIDAL

⁷⁰⁷⁶ Outputs from the Tidal Trent 2023 flood model (see section 1.10) show that the CSA would not flood during both the 0.5 % AEP (2121 UE scenario) with defences in place and 0.5 % AEP flood defence breach scenarios, ensuring the Development would be safe for its lifetime (40 years, through to 2067 from the assumed commission date of 2027).

⁷⁴⁷⁷ The fluvially dominated 1 % AEP + 62 % CC defended scenario outputs show that a minor section of Work Area 3, Mitigation/Enhancement (Fields 18 and 390) would flood to a depth of 0.6 m.

⁷²⁷⁸ Works Area 3, Mitigation/Enhancement, will comprise grassland in the affected area. As such, the minor area located in the tidal flood extent is compatible with the EA's "Working with natural processes to reduce flood risk 2024" Flood and Coastal Erosion Risk Management (FCERM) research report³¹.

⁷³⁷⁹ No other Work Area is located within the tidal flood extents of the River Trent.

⁷⁴⁸⁰ As such, the risk of the Development flooding from tidal sources is Negligible.

A9.1.2.2 FLUVIAL

⁷⁵⁸¹ The majority of Work Area 1: Solar PV, based on the illustrative layout, is located outside Flood Zones 2 and 3, with the exception of Field 182/184, which is in Flood Zone 2, as of 28th November 2025.

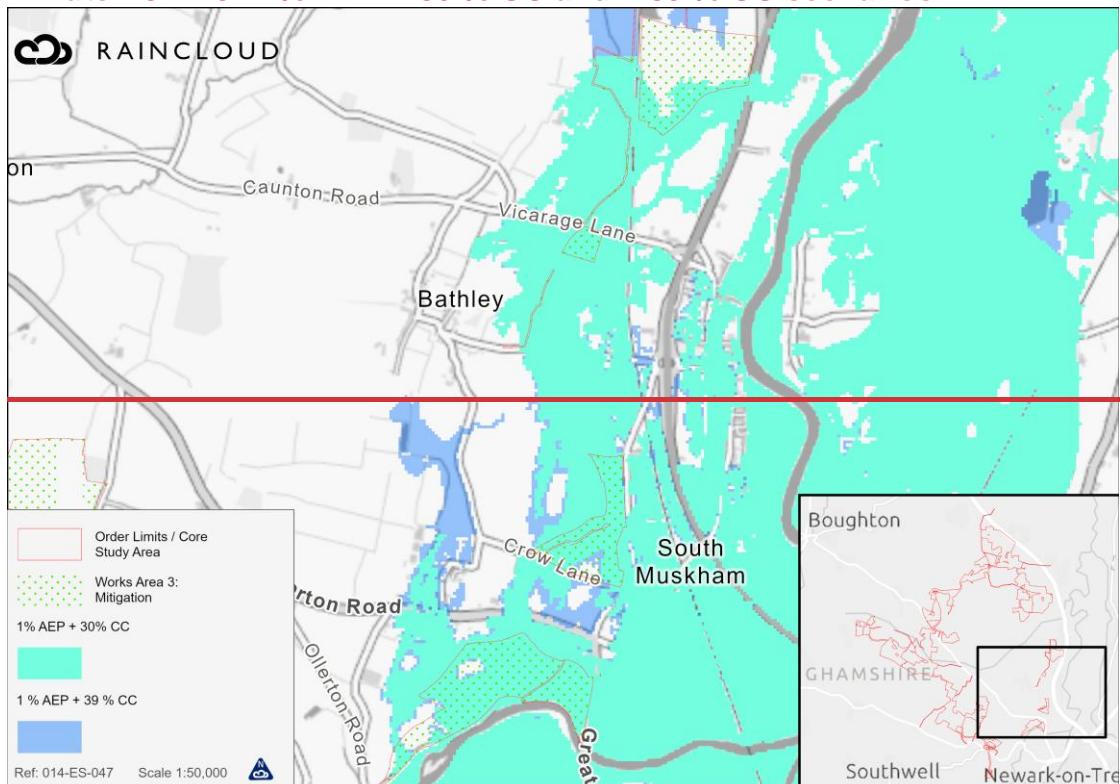
⁷⁶⁸² Regardless, flood zones do not account for CC and as such, each source of flooding is assessed in the following sections in accordance with the NPPF and NPS documents.

⁷⁷⁸³ As the Development is Essential Infrastructure and will have a lifespan of 40 years (anticipated to be decommissioned from the end of 2069) the Development is required to account for a 23 % CC allowance for the 2050s epoch (2040-2069) for the Lower Trent and Erewash Management Catchment.

A9.1.2.2.1 River Trent (Fluvial)

⁷⁸⁸⁴ As shown in Plate A9.1.4, the only aspect of the Development located within the 1 % AEP flood extents of the River Trent is Work Area 3, Mitigation / Enhancement, which will comprise grassland, scrub, scattered trees and an orchard. As such, this is compatible with the EA's "Working with natural processes to reduce flood risk 2024" FCERM report.

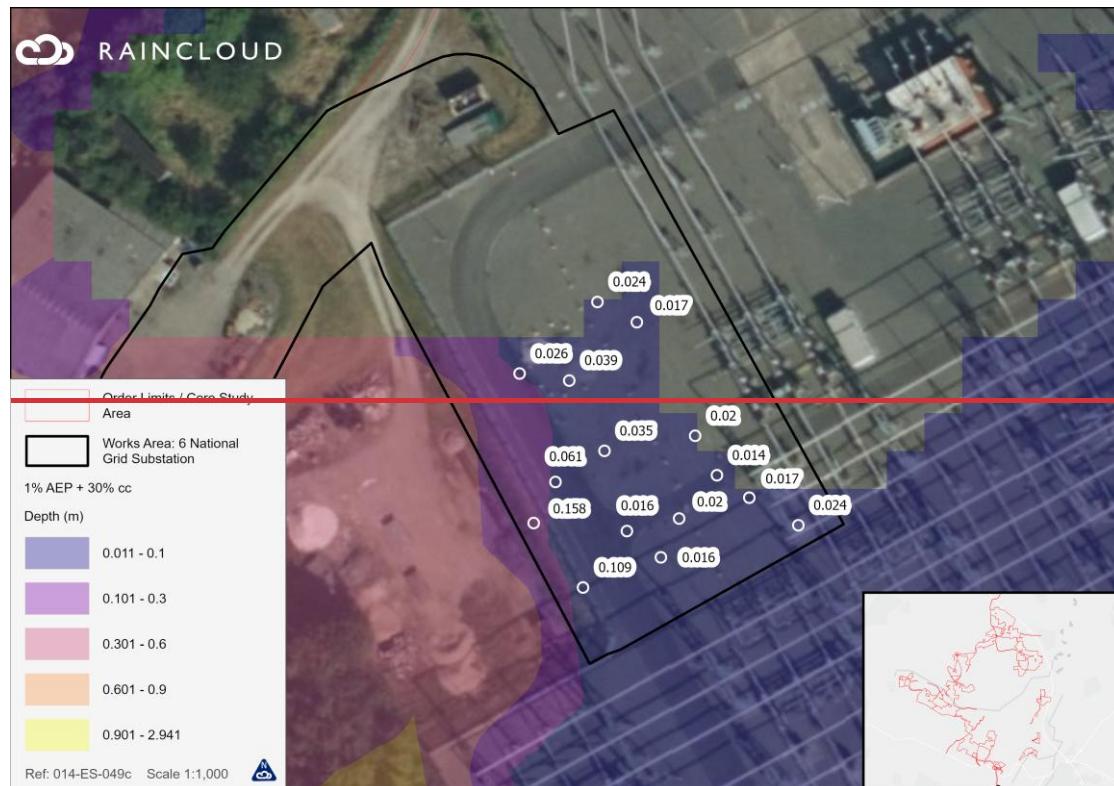
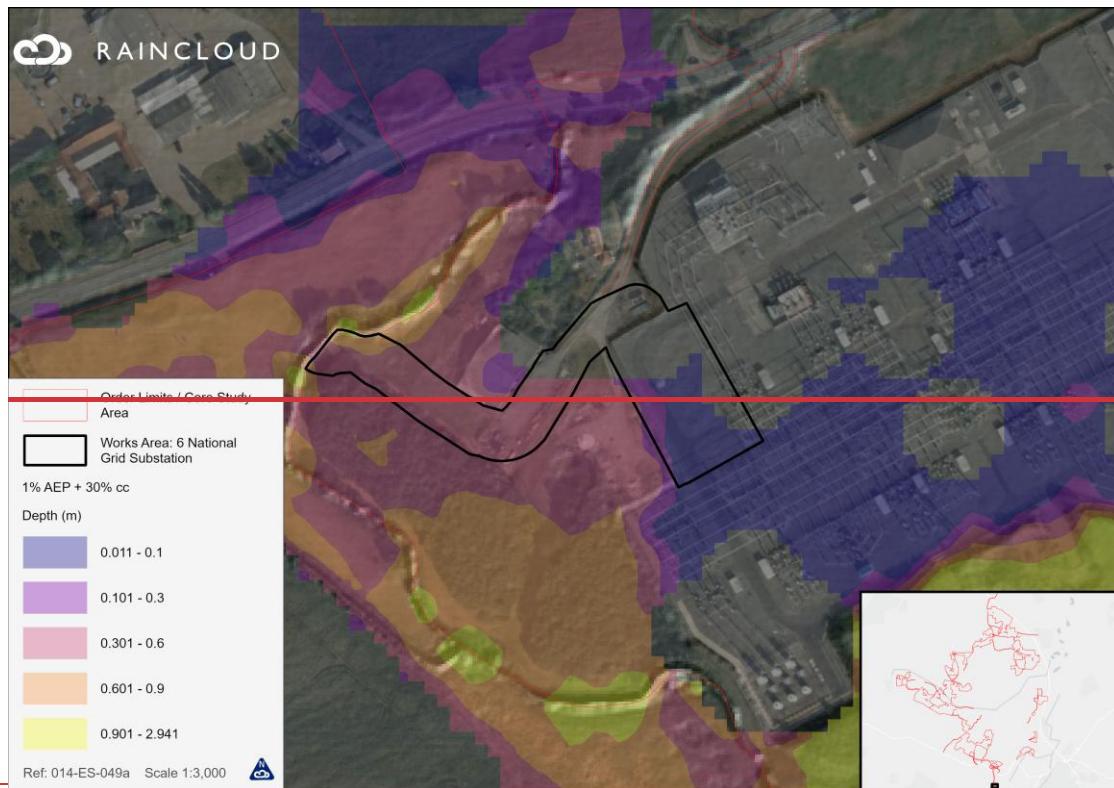
⁷⁹⁸⁵ The 1 % AEP extent also marginally encroaches into Work Area 6: National Grid Staythorpe Substation, which has private flood defences, and Work Area 7: Consented Staythorpe BESS and Connection, which included flood

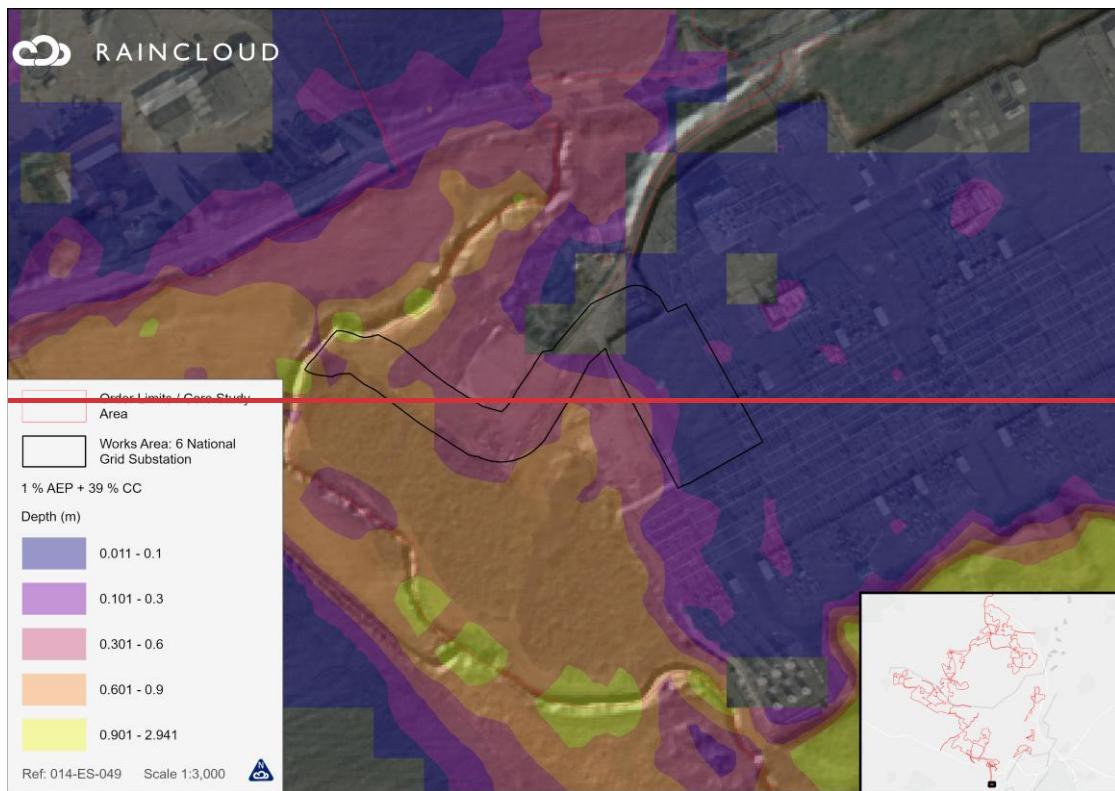

³¹ https://www.gov.uk/flood-and-coastal-erosion-risk-management-research-reports/working-with-natural-processes-to-reduce-flood-risk-2024?utm_medium=email&utm_campaign=govuk-notifications-topic&utm_source=a06ab0c7-b939-430c-a4b4-14734d0c1c23&utm_content=weekly

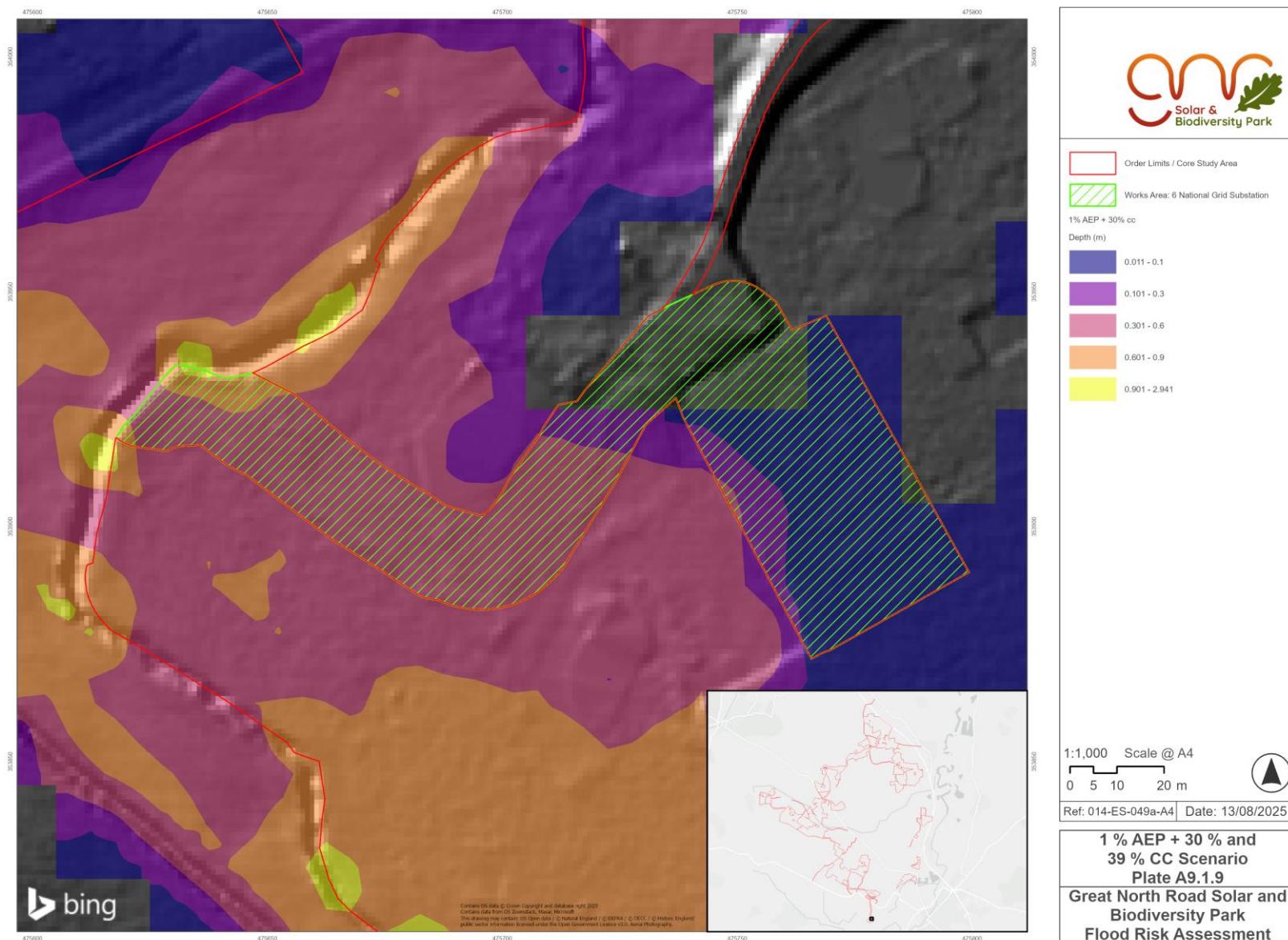
resilient design as part of NSDC planning application reference numbers 22/01840/FULM and 24/01261/FULM).

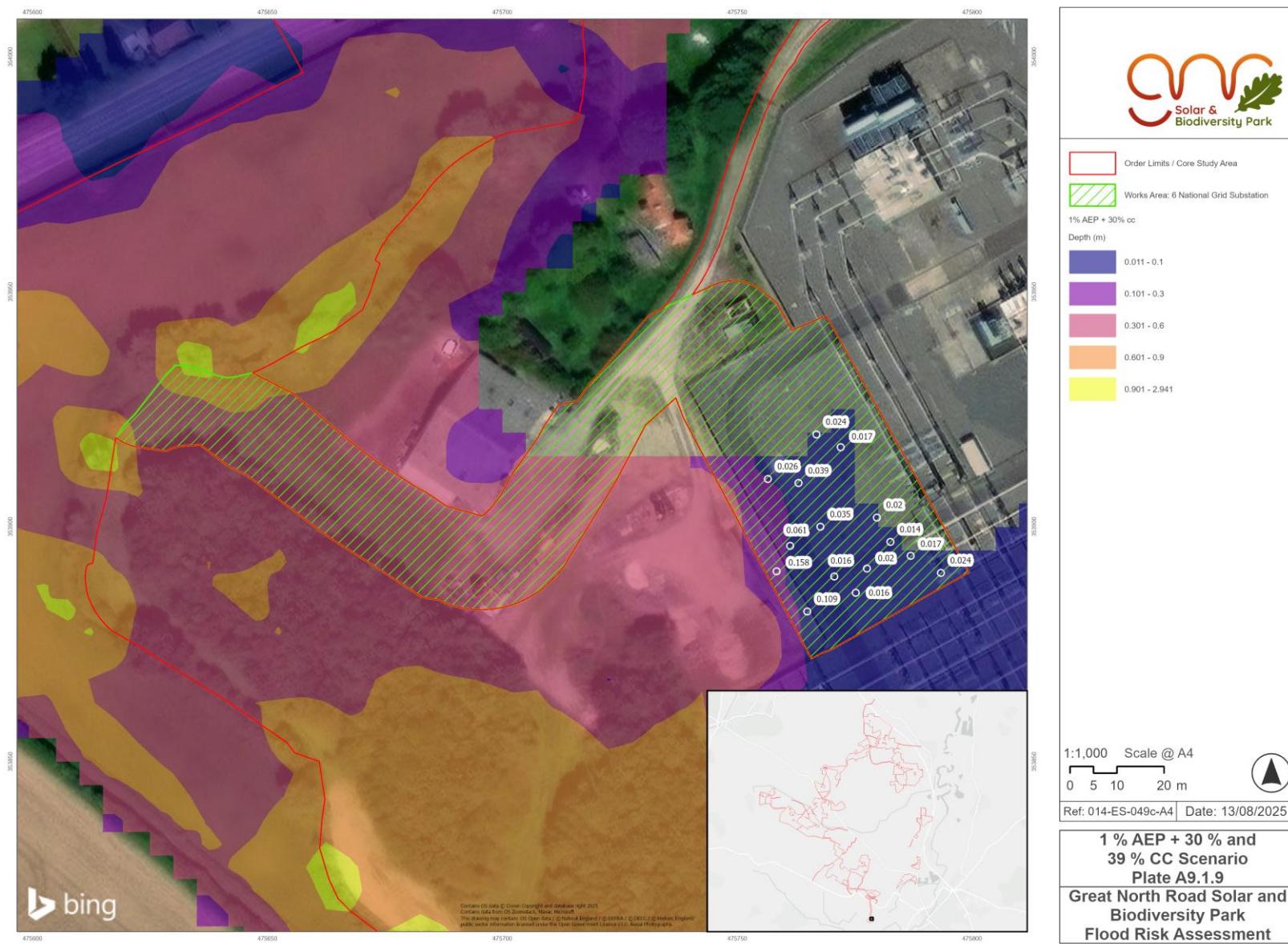
A9.1.2.2.1.1 *Climate change scenarios*

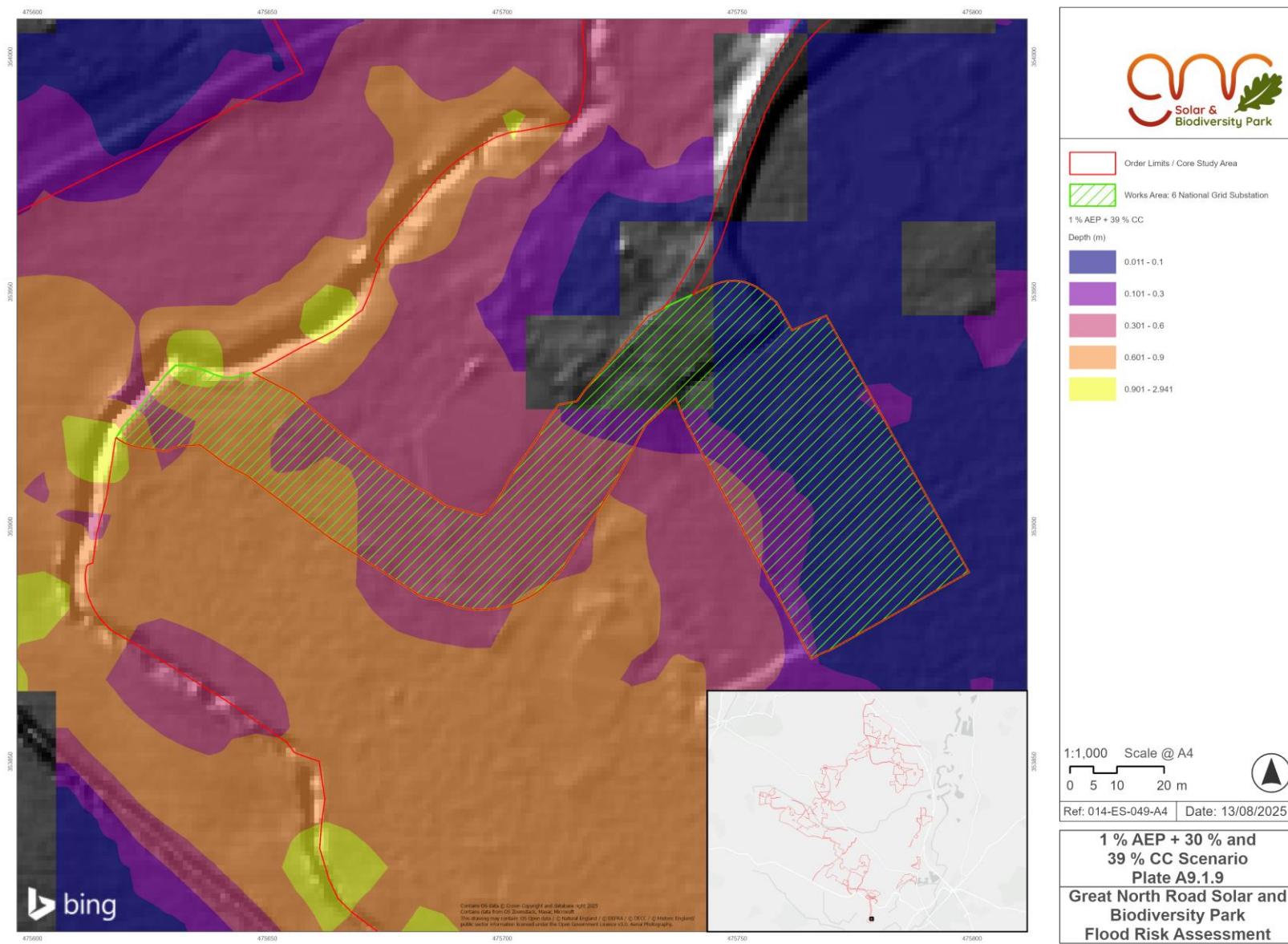
8086 The A46 upgrade DCO application to the east of the CSA has modelled the 1 % AEP + 39 % CC (2080s epoch Central Allowance) flood scenario for the fluvial River Trent. Outputs from the model, made available by Skanska, show that there is a marginal increase in the extent of flooding (within the CSA) during the 1 % AEP + 39 % CC (2080's epoch Central Allowance) flood scenario compared to the 30 % CC scenario, as shown in [PlateFigure A9.1.2519 in Appendix D](#).

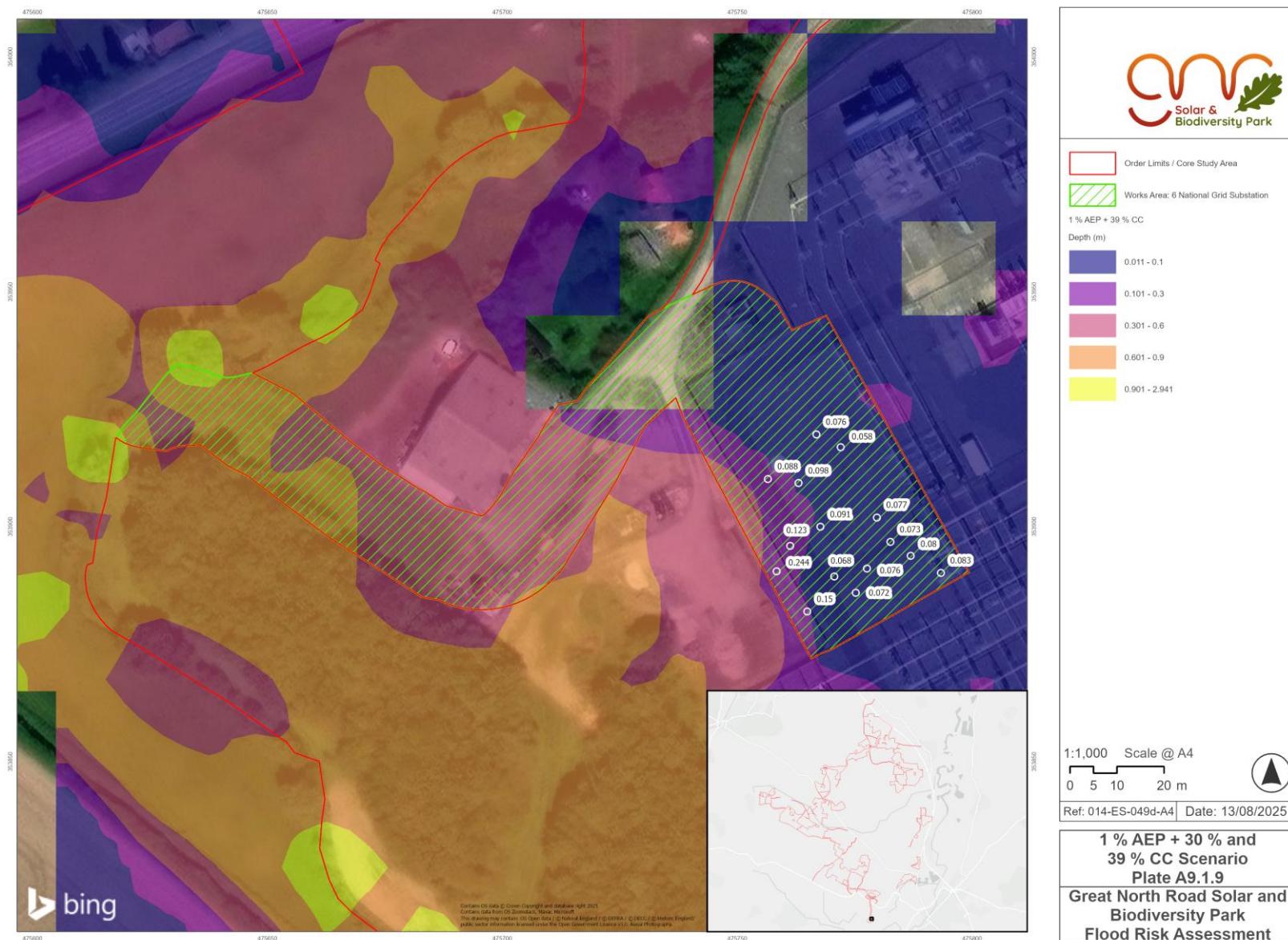


~~Plate A9.1.25: 1 % AEP + 30 % CC and + 39 % CC scenarios~~

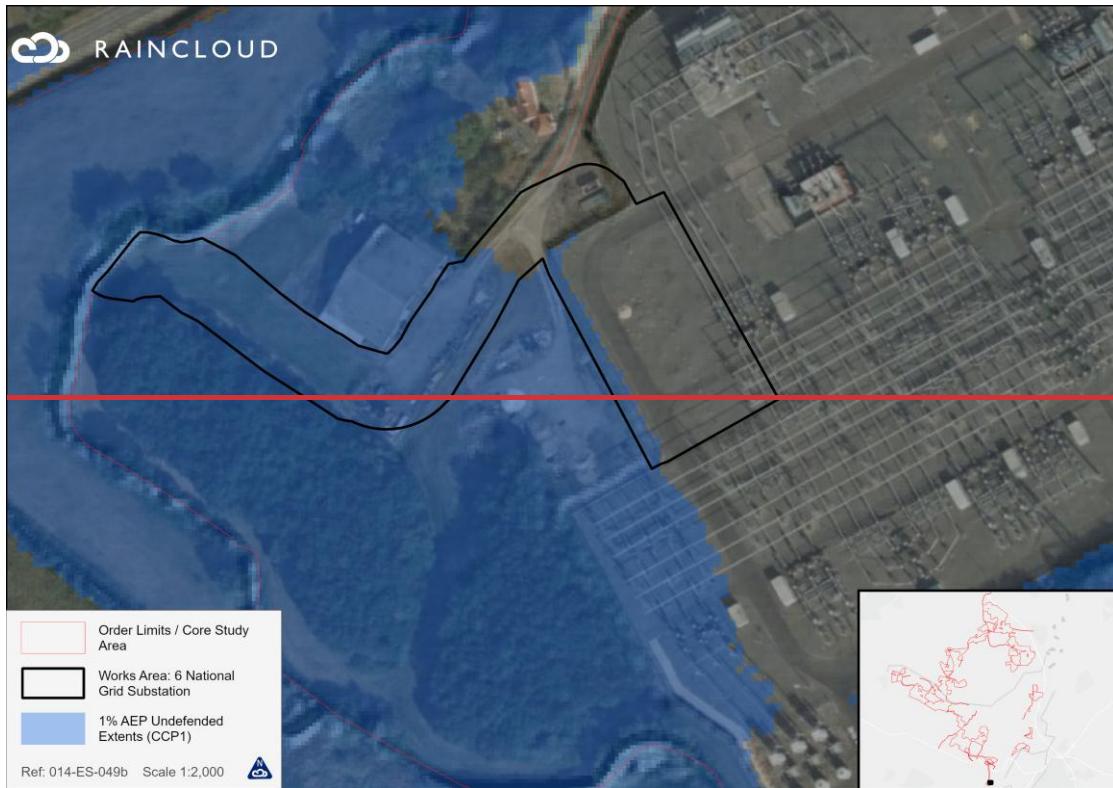



81 Compared to the 30 % CC scenario, the 39 % CC allowance leads to a marginal increase in the extent of areas modelled to flood within Work Area 6: National Grid Staythorpe Substation, as shown in [Plate A9.1.26](#).




Plate A9.1.26: 1 % AEP + 30 % and 39 % CC scenarios³²





8288 The EA 1 % AEP undefended CCP1 dataset (2036-2069) shows Work Area 6 is almost entirely located outside the flood extent (i.e. the main platform area), as shown in [PlateFigure A9.1.2720 in Appendix D](#).

Plate A9.1.27: 1 % AEP undefended CCP1

8389 Given the time-limited nature of the operational phase of the Development, the conservative approach of applying 30 % CC allowance, in the absence of the 23 % CC allowance for the 2050s epoch, is acceptable and should there be a delay in the completion of the construction of the Development, resulting in the operational phase extending into the 2080s epoch, then the design of the Development will ensure compliance with the 39 % CC allowance i.e., no electrically sensitive equipment flush to ground, as shown in [Plate A9.1.2810](#) which illustrates a typical arrangement within substations.

Plate A9.1.2810: Typical substation connection arrangement

[8490](#) All new aboveground infrastructure i.e. solar PV (Works Area 1), substations (Work Area 4), BESS and substation compound (Work Area 5a and 5b), are located outside the 1 % AEP + 39 % CC extent from the River Trent.

[8591](#) Work Area 2, Cables, (including jointing bays) will be below ground and will therefore not influence conveyance or displace floodwater.

[8692](#) Work Area 3, Mitigation/Enhancement areas located within the flood extent of the River Trent 1 % AEP + 30 % CC, will comprise grassland, scrub, orchard, scattered trees and arable fields. As such, this is compatible with the EA's "Working with natural processes to reduce flood risk 2024" FCERM research report. No dense planting (woodland or orchards will be planted in Flood Zone 3).

[8793](#) Work Area 6: National Grid Staythorpe Substation is located within the 1 % AEP + 23 % CC extent (30 % CC used as proxy) and is mostly modelled to flood to depths of less than 0.1 m (i.e. within the main platform area), as shown in Plate A9.1.26.

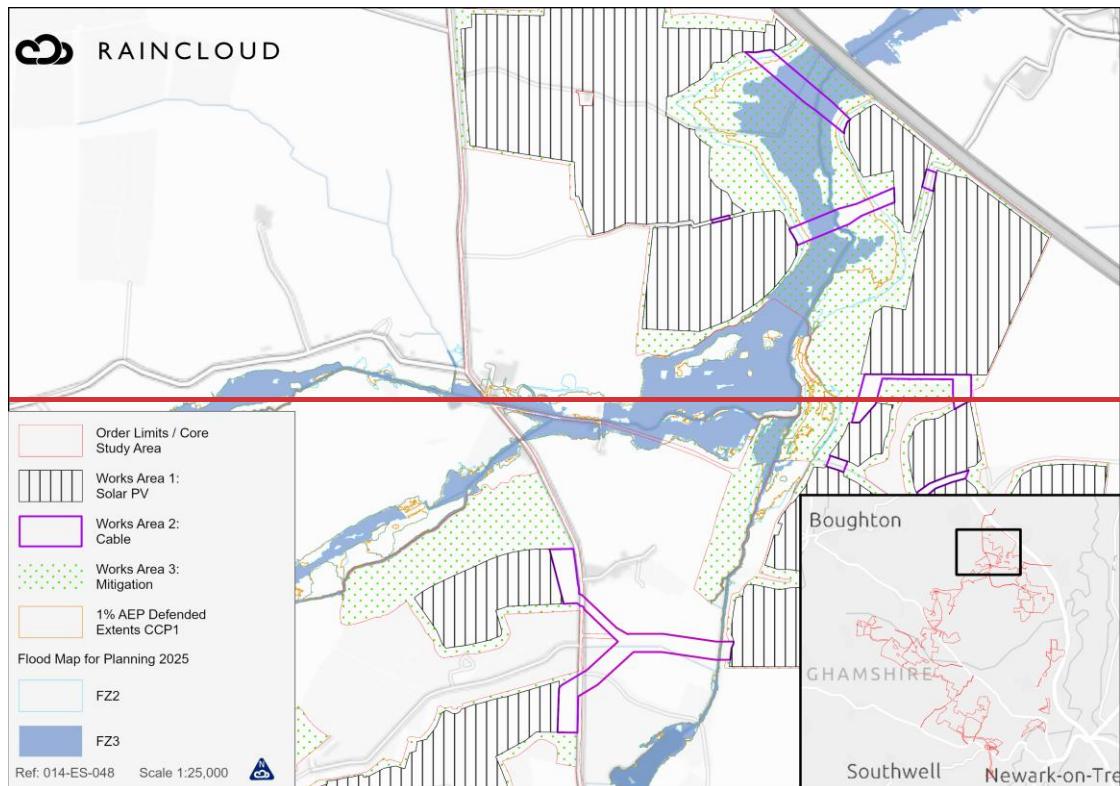
[8894](#) Similarly, using the 39 % CC allowance as a sense check, Work Area 6 could flood to a nominal depth of less than 0.1 m (i.e. within the main platform area).

[8995](#) The National Grid Staythorpe Substation has private hard (walls) and soft (embankments) defences to a level of 13.10 m AOD. As such, Work Area 6 is unlikely to be inundated during the 1 % AEP + 30 % CC and 39 % CC events, should the Development operate marginally into the 2080s epoch.

[9096](#) Work Area 7, Consented Staythorpe BESS and Connection, will utilise the existing infrastructure associated with the Staythorpe BESS (construction due to commence at the time of writing). The Staythorpe BESS design included flood resilience measures and the critical aspects of the scheme are located outside the 1 % AEP + 30 % CC and 39 % CC extents. As such, connecting the Development in Work Area 7 to the existing 400 kV infrastructure will be within an area not modelled to flood during the 1 % AEP + 30 % CC and 39 % CC event.

[9197](#) Work Area 8, Access, will utilise existing roads or be flush to the existing ground level and will therefore not influence conveyance or displace floodwater.

9298 The commitment in the oEMP is that should the Development lifetime be anticipated to extend into the 2080s epoch, as a result of delays to the construction programme for example, then modelling will be undertaken in year 2069 using the appropriate climate change allowances at the time, in consultation with the EA (and other regulators). Should modelling results show that the Development has the potential to interact with flood depths then the Development design will be altered accordingly to ensure that flood storage and conveyance is maintained for the River Trent. This could involve raising the PV Arrays (subject to negligible loss of storage and conveyance), the removal of the first row of panels on a PV table or removing the mounting system and associated infrastructure from the modelled extent.


9399 As such, the risk of flooding from the River Trent (fluvial) is Low.

A9.1.2.2.2 Moorhouse Beck

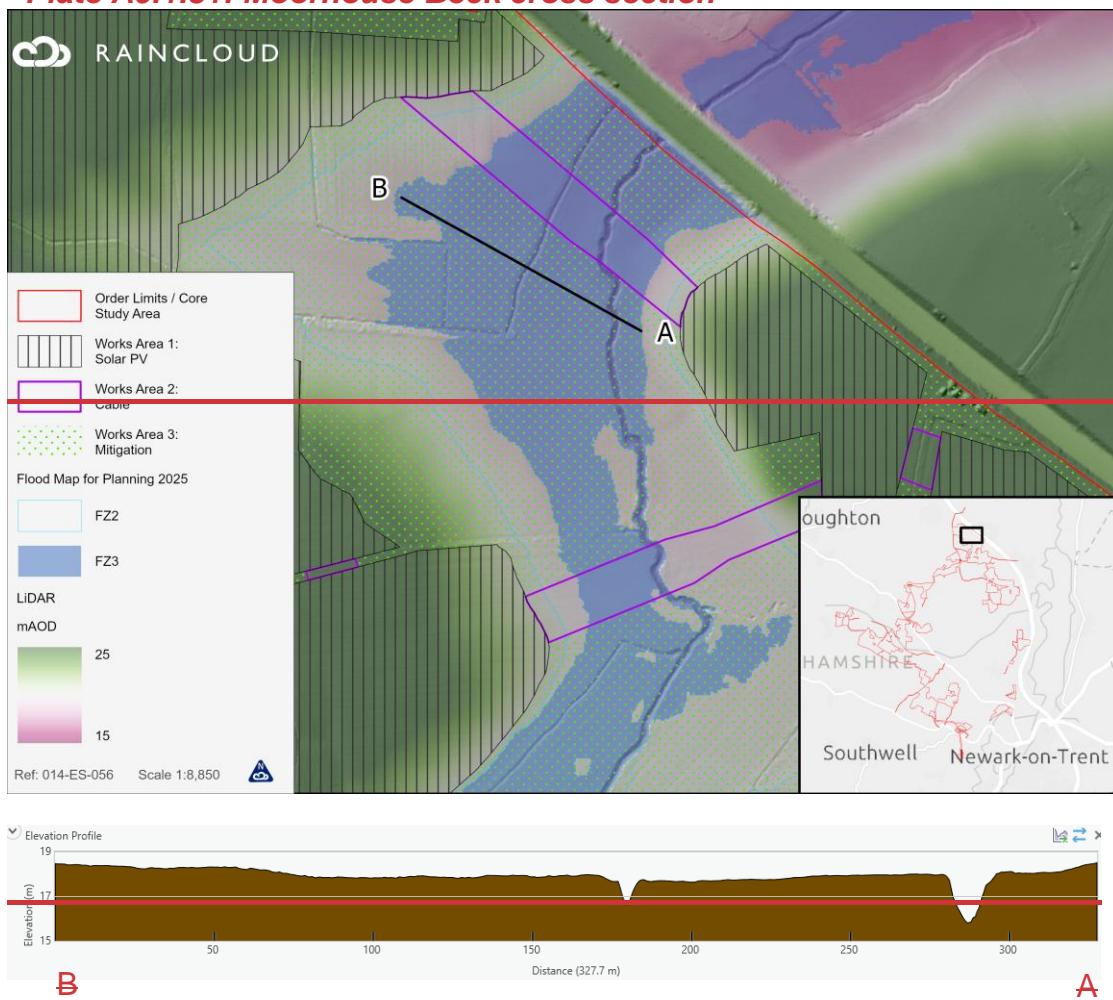
94100 Only Work Area 2, Cables, i.e., below-ground structures and Work Area 3: Mitigation / Enhancement are located within the 1 % AEP flood extents of Moorhouse Beck.

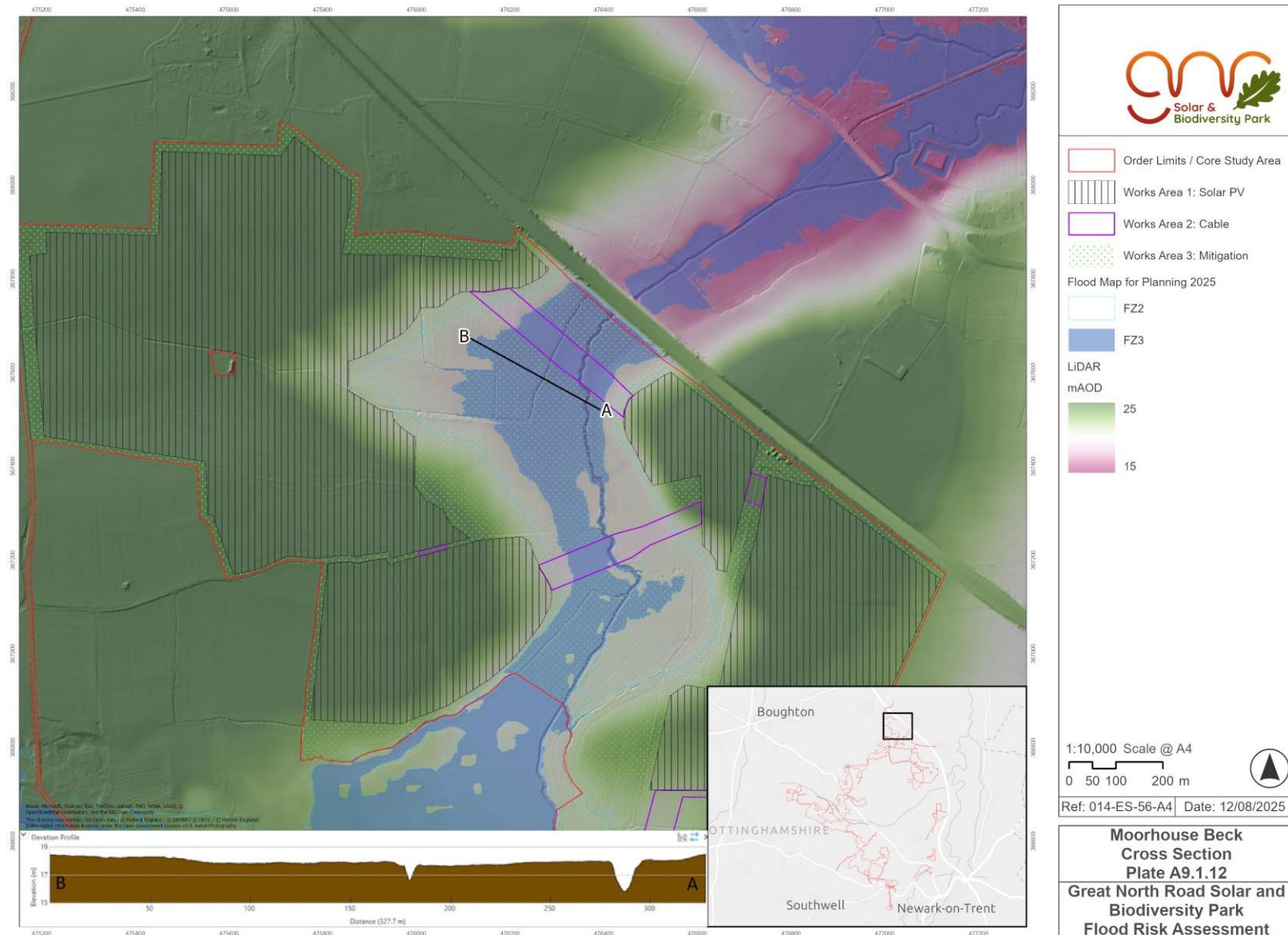
95101 Work Area 1 and 4 have been located outside of Flood Zones 2 and 3 and the future floodplain (2036-2069) associated with Moorhouse Beck, as shown in [PlateFigure A9.1.2921 in Appendix D](#).

Plate A9.1.29: Moorhouse Beck – Flood Zones

96102 Wrack marks, as shown in [Plate A9.1.3011](#), were observed along the stretch of Moorhouse Beck adjacent to Fields 0 and 57 to be at less than 50 % channel depth following a persistent rainfall event (week commencing 30th September 2024), where the area received 175 % of the 1991-2020 average

rainfall in September 2024³³, suggesting a capacity to convey substantial flows without becoming bankful.


Plate A9.1.3011: Wrack marks on Moorhouse Beck following persistent rainfall



³³ Plate A9.1.3412 shows a cross section through the floodplain suggesting that should Moorhouse Beck overtop its banks then floodwater will spread over a wide flat area to shallow depths, and not interact with electrically sensitive infrastructure in Work Area 1, Solar PV.

³³ https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/weather/learn-about/uk-past-events/summaries/mwr_2024_09_for_print_v1.pdf

Plate A9.1.31: Moorhouse Beck cross section

98104 Whilst Work Area 3, Mitigation/Enhancement, is located within the floodplain of Moorhouse Beck. Work Area 3 will comprise grassland, scrub and scattered trees. No blocks of woodland are located in Flood Zone 3. As such, this is compatible with the EA's "Working with natural processes to reduce flood risk 2024" FCERM research report.

99105 As such, the risk of flooding from Moorhouse Beck is Negligible.

A9.1.2.2.3 River Greet, Pingley / Car Dyke

100106 As outlined in Section A9.1.1.13, the A617 Road acts as a topographical barrier which restricts floodwater from the River Greet and Pingley Dyke from propagating north via a culvert towards Work Area 5a, BESS, and 5b, 400 kV Compound.

101107 1D-2D modelling shows that no aspect of Work Area 5a or 5b are located within the extents of the 1 % AEP + 39 % CC event.

102108 Similarly, Work Area 6 (excluding potential underground cable area) is located outside the extents of the 1 % AEP + 30 % CC and 50 % CC extents.

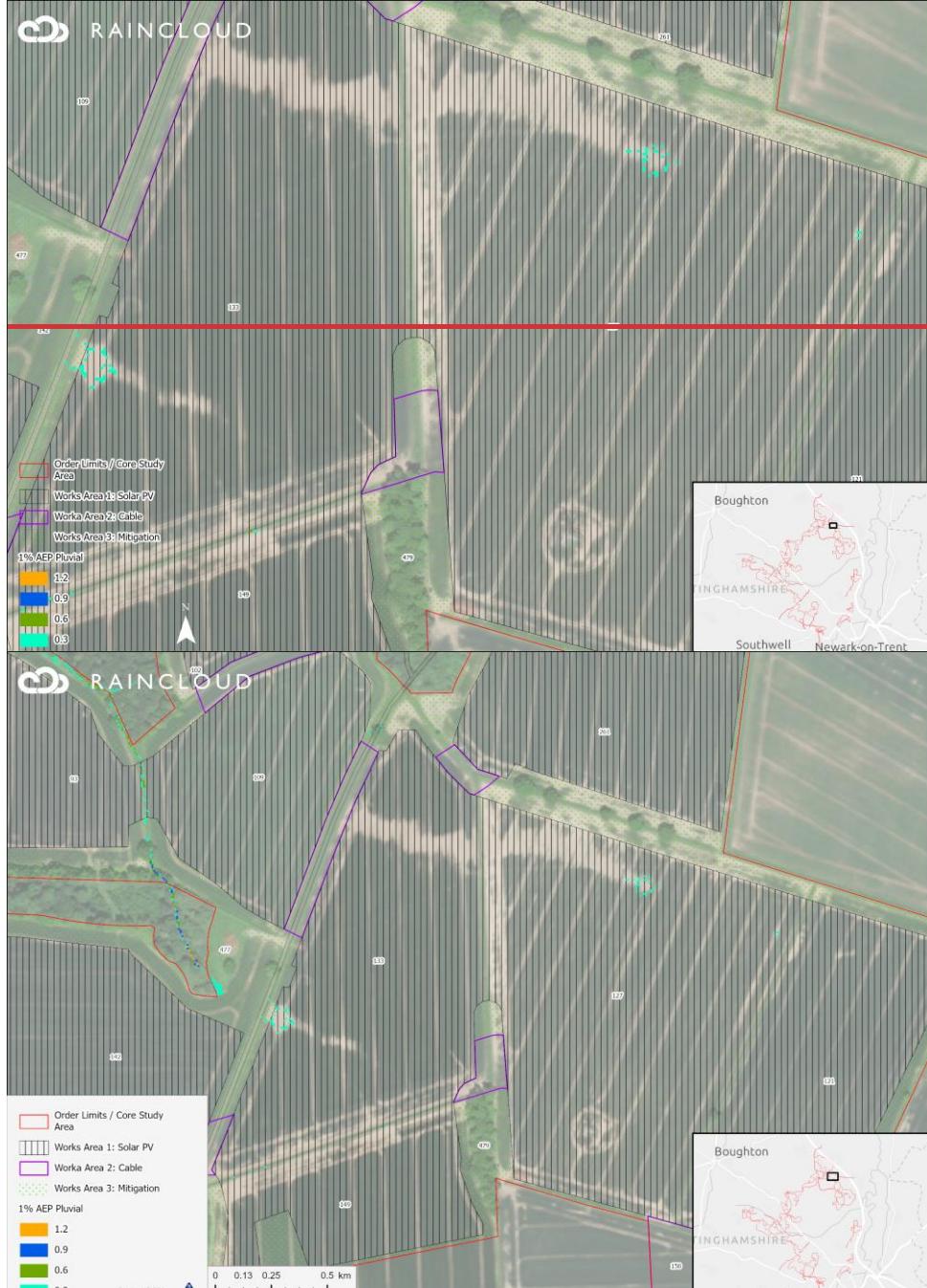
103109 One of the two access routes (Work Area 8) to Work Area 5a is located within the 1 % AEP + 39 % CC extent and has a maximum depth of 0.14 m. Velocities are mostly below 0.1 m/s.

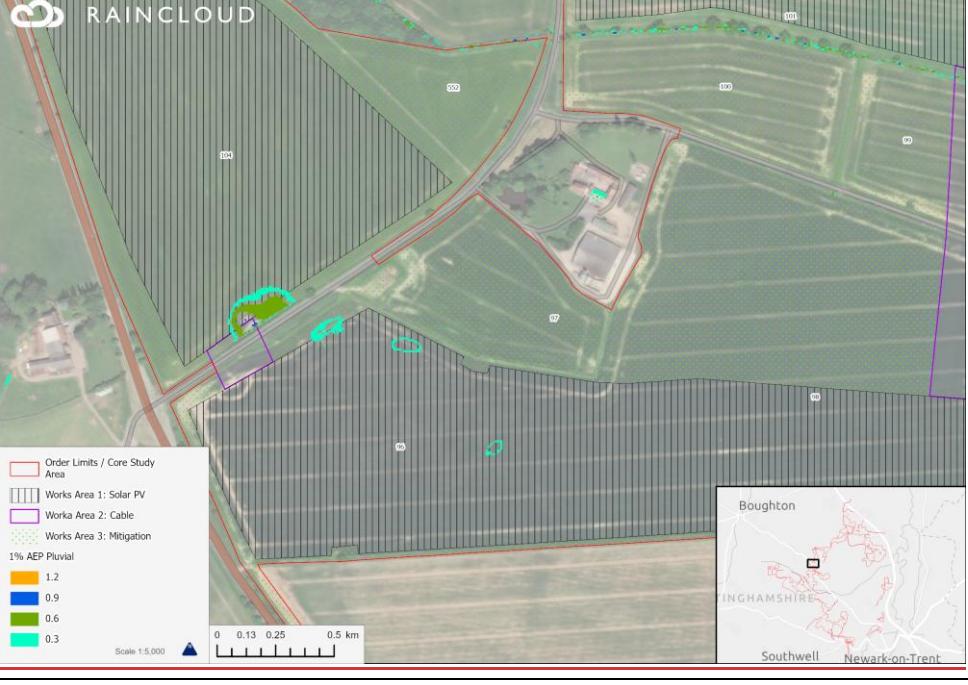
104110 As such, the risk of flooding at Work Area 5a is Low.

105111 The risk to the Development from the River Greet / Pingley Dyke is therefore Low.

A9.1.2.3 PLUVIAL

106112 The majority (89.3 %) of the CSA is located outside areas classified as at risk of pluvial flooding for the 1 % AEP event, based on the EA Risk of Flooding from Surface Water (RoFSW) mapping.


107113 Electrically sensitive infrastructure, such as inverters, will be located outside the 3.3 %, 1 % and 1 % AEP surface water flooding extent, as shown in Plate A9.1.7 of this FRA.


108114 The CSA is in agricultural (arable and pastoral) use, however it is known that some areas are prone to generating substantial surface water run-off during extreme or prolonged rainfall events, which has been evidenced by properties downslope of the CSA being flooded.

A9.1.2.3.1 Work Area 1: Solar PV

109115 The majority of Work Area 1 has been sited to avoid pluvial flood pathways and areas of pooling. Table A9.1.5 identifies fields in Work Area 1, Solar PV, Area are identified by the EA as being at risk of pluvial flooding, to depths of more than 0.3 m (filters out isolated modelled cells).

Table A9.1.5: Work Area 1 over 0.3 m pluvial depth

Field Number	Map
133 and 127	

Field Number	Map
96 and 104	<p>RAIN CLOUD</p> <p>Order Limits / Core Study Area</p> <p>Works Area 1: Solar PV</p> <p>Works Area 2: Cable</p> <p>Works Area 3: Mitigation</p> <p>1% AEP Pluvial</p> <ul style="list-style-type: none"> 1:2 0.9 0.6 0.3 <p>N</p> <p>A616</p> <p>1% AEP Pluvial</p> <ul style="list-style-type: none"> 1:2 0.9 0.6 0.3 <p>Scale 1:5,000</p> <p>0 0.13 0.25 0.5 km</p> <p>Boughton</p> <p>TINGHAMSHIRE</p> <p>Southwell Newark-on-Trent</p> <p>RAIN CLOUD</p> <p>Order Limits / Core Study Area</p> <p>Works Area 1: Solar PV</p> <p>Works Area 2: Cable</p> <p>Works Area 3: Mitigation</p> <p>1% AEP Pluvial</p> <ul style="list-style-type: none"> 1:2 0.9 0.6 0.3 <p>Boughton</p> <p>TINGHAMSHIRE</p> <p>Southwell Newark-on-Trent</p>

Field Number	Map
184	

110116 PV arrays will have a leading edge (bottom edge ~~pf of~~ panels) raised off ground level by approximately 0.5 m, with the exception of areas modelled to flood to a depth of 0.5 m or higher for the 1 % AEP + 25 % CC event (in accordance with Lower Trent and Erewash Management Catchment peak rainfall allowances (2070s)), whereby the leading edge will be higher, to allow for 300 mm freeboard to account for residual uncertainty in the modelling.

111117 Pluvial flood depths have been verified by 2D direct rainfall modelling, as shown on [PlateFigure A9.1-87 in Appendix D](#): 1 % AEP Flood Depths – Raincloud 2D Modelling of this FRA.

442118 As such, the impact of pluvial flooding on Work Area 1, Solar PV, will be Negligible.

A9.1.2.3.2 Work Area 2: Cables

443119 Cables will be located underground in waterproof ducting. Areas of cable trench excavations will not be left open for considerable periods of time therefore limiting the potential interaction with surface water.

444120 As such the risk of pluvial flooding is Negligible.

A9.1.2.3.3 Work area 3: Mitigation/Enhancement

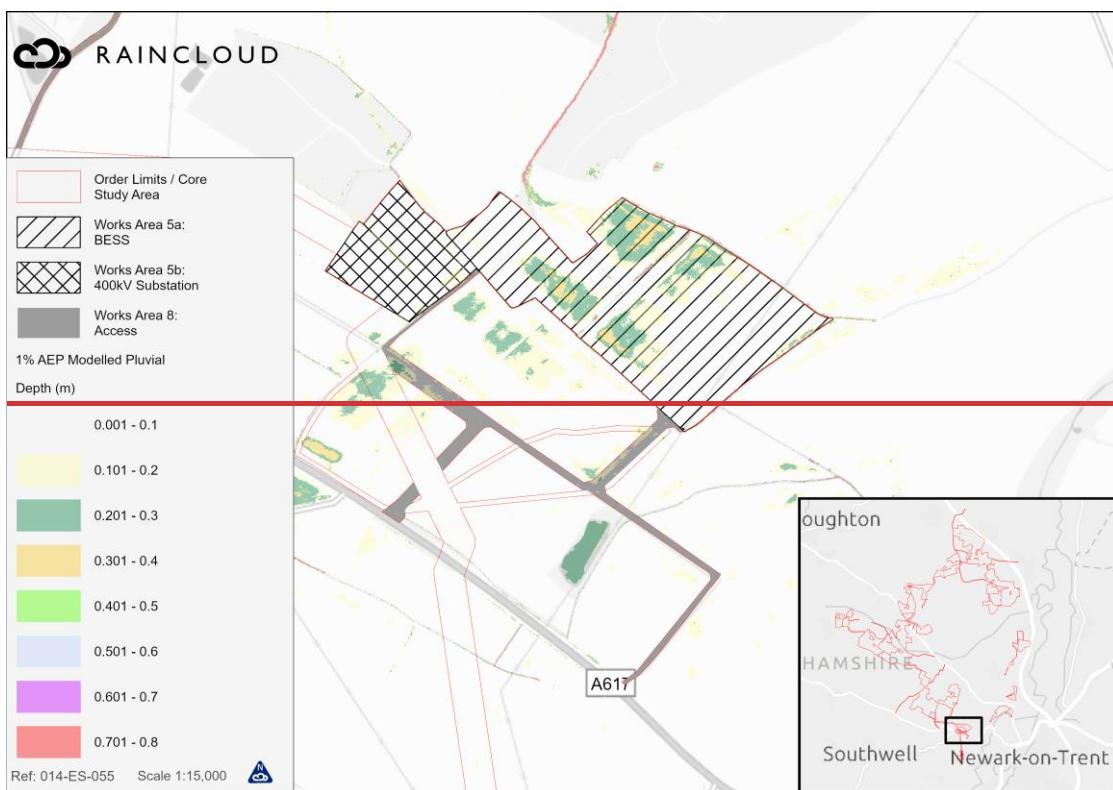
445121 Work Area 3 is reserved for enhancement measures and these will be cognisant of existing flood risk from pluvial sources, and grassland upslope of these areas within these areas will serve to improve the downstream effects of run off.

446122 As such, the risk of flooding to Work Area 3 is Negligible.

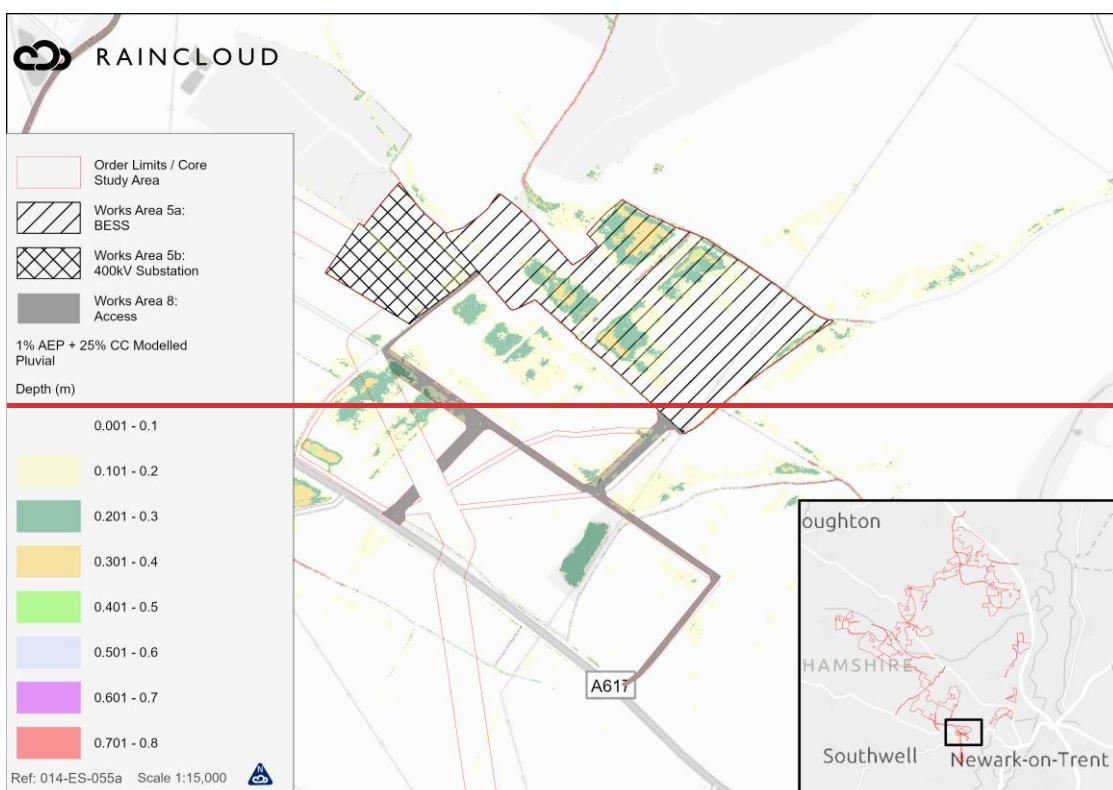
447123 The beneficial impacts of enhancement on pluvial flooding are discussed in Section A9.1.3.

A9.1.2.3.4 Work Area 4: Intermediate Substations

448124 No areas of Work Area 4: Substations are located within the modelled 0.1 % AEP pluvial outline.


449125 As such the risk of pluvial flooding is Negligible.

A9.1.2.3.5 Work Area 5a BESS


450126 As outlined in Section A9.1.1.7, sections of Work Area 5a, BESS, is located within an area modelled to be at risk of pluvial flooding, as shown on the EA long term flood risk map.

451127 The EA pluvial flood map depths have been verified through 2D direct rainfall analysis for the 1 % AEP and 1 % AEP + 25 % CC, 3-hour event using FEH data, as shown in ~~Plate~~Plates A9.1.~~32~~13 and ~~Plate~~Plates A9.1.~~33~~33.

Plate A9.1.32: Modelled 1 % AEP Pluvial Flood Depth

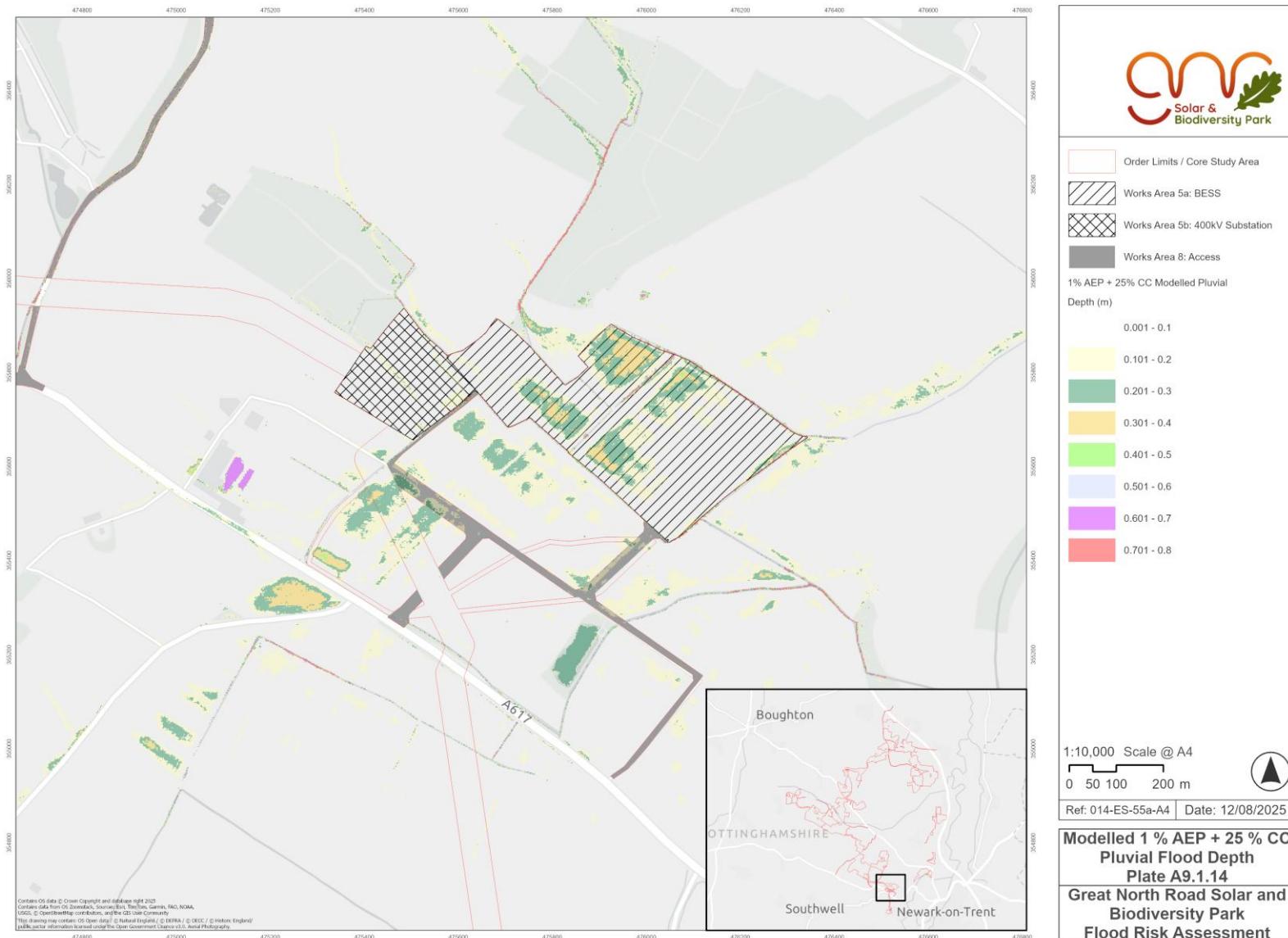


Plate A9.1.33: Modelled 1 % AEP + 25 % CC Pluvial Flood Depth

127 14.

422128 The placement of above ground infrastructure will avoid areas for flooding greater than 0.4 m, with the exception of a very small area in the north of Work Area 5a. BESS units are generally not located flush to the existing ground and are elevated on corner blocks or a racking frame elevated from the ground, as shown in Plate A9.1.3415.

Plate A9.1.3415: Typical Corner Pads and racking on BESS units

423129 As such, pluvial flooding should not pose a risk to the electrically sensitive aspects of the BESS units.

424130 Management of surface water runoff from the Development is detailed in Section A9.1.4 of this FRA, meaning a formal drainage system will have capacity accept and convey rainfall during the 1 % AEP + 40 % CC event.

425131 Based on the design of the Development to avoid placing larger above ground structures (e.g. substations) within the flow paths of surface water and the land management measures described in Section A9.1.3, the risk of pluvial flooding to and from the Development is Low.

A9.1.2.3.6 Work Area 5b: 400 kV Substation

426132 As shown on PlateFigure A9.1.326, 2D pluvial modelling shows that the 400 kV substation is not at risk of flooding from pluvial sources.

427133 As such, the risk of pluvial flooding at Work Area 5b is Negligible.

A9.1.2.3.7 Work Areas 6 and 7

¹²⁸¹³⁴ The existing or consented infrastructure within Work Areas 6 and 7 are shown not to be at risk of pluvial flooding on the EA flood map. Additionally, the infrastructure in these areas will be served by a formal drainage system designed to accommodate intense rainfall.

¹²⁹¹³⁵ As such, the risk of pluvial flooding in Work Areas 6 and 7 is Negligible.

A9.1.2.3.8 Work Area 8: Access Works

¹³⁰¹³⁶ Work Area 8 is principally within existing highways on the road network and is mostly free of pluvial flood risk, principally as a result of highways drainage.

¹³¹¹³⁷ The areas of Work Area 8 which are outside the existing highways are not shown to be at risk of pluvial flooding.

¹³²¹³⁸ As such, the risk of pluvial flooding to Work Area 8 is Negligible.

A9.1.2.4 GROUNDWATER

¹³³¹³⁹ Work Area 4, Intermediate Substations, Work Area 5a, BESS, and Work Area 5b, 400 kV Compound, are the main aspects of Development which have the potential to be affected should groundwater emerge at the surface, given that the PV arrays in Work Area 1 are elevated from the ground by at least 0.5 m, and Work Area 2, cables, are in waterproof ducting.

¹³⁴¹⁴⁰ The EA Long Term Flood Risk service³⁴ reports “Flooding from groundwater is unlikely in this area”.

¹³⁵¹⁴¹ BGS borehole records^{35, 36, 37} approximately 30 m southeast of Work Area 5a show groundwater was struck at 3.0 m, 2.7 m and 1.8 m BGL, associated with sand and gravel layers at corresponding depths which overlay mudstone, indicating that the mudstone acts as a low transmissivity rock layer limiting infiltration at shallow depth, rather than the gravels being an extensive groundwater unit.

¹³⁶¹⁴² Table 4a of the SFRA identifies that Staythorpe Road, near to Work Area 6 and 7, has previously flooded from groundwater sources, however no records of groundwater flooding in the area surrounding Work Area 5a and 5b exist.

¹³⁷¹⁴³ The PV arrays in Work Area 1 will be raised off the ground by at least 0.5 m on a racking system and therefore will not be affected in the event that groundwater emerges at the surface.

¹³⁸¹⁴⁴ Cabling in Work Area 2 will be within waterproof ducting. The entry point of any cable or ducting into chambers should also be sealed to prevent water ingress.

¹³⁹¹⁴⁵ Infrastructure in Work Area 5a and 5b will not be flush to ground level, e.g. by concrete feet, elevating the BESS units by approximately 0.3 m AGL, as outlined in the Pluvial Flooding assessment in Section A9.1.2.4. Should

³⁴ <https://check-long-term-flood-risk.service.gov.uk/risk>

³⁵ <https://api.bgs.ac.uk/sobi-scans/v1/borehole/scans/items/19366580>

³⁶ <https://api.bgs.ac.uk/sobi-scans/v1/borehole/scans/items/239130>

³⁷ <https://api.bgs.ac.uk/sobi-scans/v1/borehole/scans/items/238970>

groundwater emanate at ground level within Work Area 5, it is likely to spread over a wide area at shallow depth. As such the risk of groundwater interacting with infrastructure within Work Area 5a and 5b is unlikely.

¹⁴⁰¹⁴⁶ Infrastructure within Work Area 6 and Work Area 7 consented / operational and will have built in resilience, such as hard standing and impermeable membranes to prevent the upward movement of groundwater interacting with infrastructure within these areas.

¹⁴¹¹⁴⁷ As such the risk of groundwater flooding is Negligible.

A9.1.2.5 RESERVOIRS

¹⁴²¹⁴⁸ The risk of flooding from the reservoir is reduced through regular maintenance by the operating authority and owner (identified in Table A9.1.2), with reservoirs in the UK having an extremely good safety record with no incidents resulting in the loss of life since 1925.

¹⁴³¹⁴⁹ Whilst the consequences of flooding from dam failure are potentially high within the eastern and southern sections of the CSA, the Reservoirs Act 1975 requires all large reservoirs to be regularly inspected and supervised by reservoir panel engineers, making the risk of failure low.

¹⁴⁴¹⁵⁰ Regarding Work Area 1: Solar PV, the extents would only encroach into one field (Field 182) and the leading edge of the panels would be above ground level by at least 0.5 m. As such, the potential for interaction with the electrically sensitive aspects of Work Area 1 is low.

¹⁴⁵¹⁵¹ The flood resilience measure in Work Areas 6 and 7 for fluvial flooding would minimise any potential impact under a reservoir breach scenario.

¹⁴⁶¹⁵² As such, the residual risk of flooding associated with reservoirs is Low.

A9.1.2.6 SEQUENTIAL TEST AND EXCEPTION TEST

A9.1.2.6.1 Sequential Test

¹⁴⁷ Paragraph 5.8.9 of NPS EN-1 states that “*If, following application of the Sequential Test, it is not possible, (taking into account wider sustainable development objectives), for the project to be located in areas of lower flood risk the Exception Test can be applied ... The test provides a method of allowing necessary development to go ahead in situations where suitable sites at lower risk of flooding are not available*”.

¹⁴⁸ Paragraph 172 of the NPPF¹⁰ states that developments located within Flood Zone 3 should apply a risk based sequential test in order to steer proposed development towards areas classed as having a lower probability of flooding. (i.e. in Flood Zone 1). Paragraph 177 of the NPPF does, however, acknowledge that under certain circumstances it may not be possible to locate the development on land identified as having a lower risk of flooding and infrastructure can be located in Flood Zone 2 or 3 for certain infrastructure, subject to passing the Exception Test.

¹⁴⁹ Utility scale solar farms can only be located where they can connect to the National Grid and the Applicant considered a number of search criteria in identifying suitable sites, as outlined in Chapter 4: Site Selection and Design Evolution [EN010162/APP/6.2.4] and Appendix C – Sequential Test Report,

~~which consider how alternative sites have been appraised and how the design of the Development has evolved to sequentially developed to avoid placing the most electrically sensitive aspects in Flood Zones 2 and 3.~~

~~150 For these reasons the Development meets the requirements set out in Table 3 of the Planning Practice Guidance³⁸ and meets the requirements of the Sequential Test of the NPPF and NPS EN-1.~~

~~151 Paragraph 5.8.10 of NPS EN-1 outlines the Exception Test “is only appropriate for use where the Sequential Test alone cannot deliver an acceptable site. It would only be appropriate to move onto the Exception Test when the Sequential Test has identified reasonably available, lower risk sites appropriate for the proposed development where, accounting for wider sustainable development objectives, application of relevant policies would provide a clear reason for refusing development in any alternative locations identified. Examples could include alternative site(s) that are subject to national designations such as landscape, heritage and nature conservation designations, for example Areas of Outstanding Natural Beauty (AONBs), Sites of Special Scientific Interest (SSSIs) and World Heritage Sites (WHS) which would not usually be considered appropriate”.~~

~~152 Work Area 2: Cables and Work Areas 6: National Grid Substation and connection point and Work Area 7: Consented Staythorpe BESS and Connection is classified as ‘essential infrastructure’ and is located within Flood Zone 1, 2 and 3 and has a low risk from all other assessed forms of flooding. As such, development that falls into this classification is subject to the exception test.~~

A9.1.2.6.2 Exception Test

~~153 Paragraph 5.8.11 of NPS EN-1 clarifies that “Both elements of the Exception Test will have to be satisfied for development to be consented. To pass the Exception Test it should be demonstrated that:~~

- ~~a. The project would provide wider sustainability benefits to the community that outweigh the flood risk; and~~
- ~~b. the project will be safe for its lifetime taking account of the vulnerability of its users, without increasing flood risk elsewhere, and, where possible will reduce flood risk overall”.~~

~~154 Paragraph 5.8.29 of NPS EN-1 also requires a sequential approach to be applied to the layout and design of projects with more vulnerable uses being located on parts of the site at lower probability and residual risk of flooding by using SuDS.~~

~~155 The two criteria set out in the Exception Test that should be applied to developments are:~~

- ~~a) the development would provide wider sustainability benefits to the community that outweigh the flood risk; and~~
- ~~b) the development will be safe for its lifetime taking account of the vulnerability of its users, without increasing flood risk elsewhere, and, where possible, will reduce flood risk overall.~~

³⁸ <https://www.gov.uk/government/collections/planning-practice-guidance>

~~156 The Development will contribute to the decarbonisation of energy supply infrastructure, therefore contributing to wider sustainability aims, including Net Zero.~~

~~157 The Development is located primarily within Flood Zone 1, with a small footprint of the Work Area 3 located within Flood Zone 2 and 3. Areas of Work Area 3 located in Flood Zone 3 will comprise grassland, scrub, an orchard and scattered trees, which is compatible with the EA's "Working with natural processes to reduce flood risk 2024" FCERM research report.~~

~~158 Work Area 2 (Cables) will be located entirely below ground and in waterproof ducting, ensuring no loss of floodplain storage or conveyance.~~

~~159 Work Area 6: National Grid Staythorpe Substation, is located in Flood Zone 2 and, despite modelling showing shallow depth inundation for the 1 % AEP + 30 % CC and 39 % CC (i.e. less than 0.1 m depth), is unlikely to flood due to the presence of private flood defences which serve the operational substation with an elevation of 13.10 m AOD.~~

~~160 Work Area 7: Consented Staythorpe BESS and Connection has incorporated flood resilient design and the connection point is likely to be in an area modelled to be outside the 1 % AEP + 39% CC.~~

~~161 The Development will incorporate planting and land management measures (RSuDS) which will reduce the potential for an increase in surface water runoff rates;~~

~~162 Hardstanding areas will be served by surface water drainage infrastructure (SuDS) to limit surface water runoff to greenfield (baseline) rate up to the 1 % AEP + 40 % CC event.~~

~~163 The Development is classed as Essential Infrastructure, as per Annex 3: Flood risk vulnerability classification, of the NPPF, which is appropriate in the Flood Zones 1, 2 and 3, in terms of flood risk vulnerability.~~

A9.1.2.6.3 Conclusion

~~164 The Development is essential energy infrastructure and Critical National Priority infrastructure, as recognised by NPS EN-1 and NPS EN-3.~~

~~165 The aspects within Work Areas 2, 6 and 7 pertain to the infrastructure required for connecting to the operational National Grid Staythorpe Electricity Substation. Consequently, the positioning of the cable and associated infrastructure has been determined as the optimal route between Work Area 5a and Work Area 6, with no other 'more suitable' locations available.~~

~~166 The urgent need for renewable energy supply and therefore the need to maximise energy generation where there is available grid capacity, there is therefore strong operational reasons for the inclusion of Work Area 2: Cables and Work Areas 6 and 7 in their locations.~~

~~167 As such, the Sequential and Exception tests are passed i.e. the Development is located appropriately (Essential Infrastructure in Flood Zone 1, 2 and 3), as per EA Flood Risk and Coastal Change Guidance.~~

A9.1.3 SOLAR PV SURFACE WATER MANAGEMENT

A9.1.3.1 CONSTRUCTION PHASE

A9.1.3.1.1 Pollution Prevention

¹⁶⁸¹⁵³ Given the relatively short construction phase and gently sloping land within the OL, it is not anticipated that significant amounts of sediment will be generated. The Development will adhere to a Construction Environmental Management Plan (CEMP), to be secured by DCO Requirement and based on the Outline CEMP provided in ES TA A5.3 [EN010162/APP/6.4.5.3]), which will ensure compliance with the relevant guidance.

A9.1.3.1.2 Run-off Rates

¹⁶⁹¹⁵⁴ Rural Sustainable Drainage Systems (RSuDS) are not a new concept, but they are not widespread in the rural environment and can present many opportunities for improving the management of water at source. They are a collection of physical structures used to mimic natural processes. In rural environments, it is an approach for managing the detrimental impact of rainfall on fields where run-off is a major threat to the flora, fauna and chemical status of our surface waters.

¹⁷⁰¹⁵⁵ RSuDS slow down or prevent the transport of pollutants to watercourses by breaking the delivery pathway between the pollutant source and the receptor. By intercepting run-off and trapping sediment before it leaves the field they help maintain and manage the provision of good water quality by preventing the loss of soil, chemicals, nutrients, and faecal organisms. A further benefit is their ability to temporarily capture water and slow down flow. This can reduce localised flooding and provide valuable aquatic habitats in the form of micro-wetlands for farmland wildlife and will encourage the downward movement of water to recharge aquifers.

¹⁷¹¹⁵⁶ Research in the United States by Cook & McCuen (2013) meta-analysis outlines that solar panels do not have a significant effect on runoff volumes or peak flows, however where ground beneath panels is bare there may be an increase in peak discharge.

¹⁷²¹⁵⁷ Milazzo et al. (2023)³⁹ reviews the role of grassland for erosion and flood mitigation in Europe and provides quantification that permanent grassland mitigates better runoff than arable land.

¹⁷³¹⁵⁸ Whilst the Natural England Technical Information Note 101 (TIN101) “Solar Parks: *maximising environmental benefits*” has been archived, the principles relating to solar parks, their siting, their potential impacts and mitigation requirements for the safeguarding of the natural environment are still relevant.

¹⁷⁴¹⁵⁹ TIN101 states:

“The key to avoiding increased run-off and soil into watercourses is to maintain soil permeability and vegetative cover. Permeable land surfaces

³⁹ The role of grassland for erosion and flood mitigation in Europe: A meta-analysis. Agriculture, Ecosystems & Environment Volume 348, 1 June 2023, 108443
<https://doi.org/10.1016/j.agee.2023.108443>

underneath and between panels should be able to absorb rainfall as long as they are not compacted and there is some vegetation to bind the soil surface”.

175160 As such, a suitable grassland sward will be developed in areas underneath the PV arrays before the construction phase.

A9.1.3.1.3 PV Array Installation

176161 Whilst the PV arrays and racking system does not involve the installation of hardstanding, the installation methods could lead to soil compaction if not managed properly.

177162 Installation of the racking system (mounting frame) should only occur when soil conditions are suitable, e.g., dry enough that tyre imprints are not deeper than a specified depth when tracking across land. The Construction Contractor will be responsible for monitoring conditions, in consultation with the Ecological Clerk of Works, in accordance with a Soil Management Plan (an outline SMP is provided as TA A17.2 EN010162/APP/6.4.17.2).

178163 The mounting framework is likely to be delivered by a vehicle with a trailer and is unlikely to cause soil compaction.

179164 The racking system will then be pile driven into the ground to a depth of typically 1 to 2 m, depending on ground conditions using similar tracked mini pile driver machinery, as shown in Plate A9.1.3516.

Plate A9.1.3516: Mini pile driver examples

180165 The PV modules are likely to be secured to the racking system by hand and therefore soil compaction is unlikely to occur during this stage, as shown in Plate A9.1.3617.

Plate A9.1.3617: PV module installation⁴⁰

⁴⁸⁴¹⁶⁶ Should vehicles cause compaction during the installation of the PV arrays then this will be ameliorated using typical small-scale horticultural machinery, as outlined in Section 5 of the oSMP (TA A17.2 EN010162/APP/6.4.17.2)

A9.1.3.2 OPERATIONAL PHASE

⁴⁸²¹⁶⁷ RSuDS components from the construction phase (grassland) will remain in place for the operational phase of the Development.

⁴⁸³¹⁶⁸ The raised nature of PV Arrays will not prevent soil from absorbing rainwater as the panels will not be placed directly on the ground and each PV Row will be separated, with the same area of soil / grassland available for infiltration as per the baseline scenario.

⁴⁸⁴¹⁶⁹ Once rainfall has fallen off a PV Array, the water will be able to spread and flow along the ground under the PV Arrays evenly into the rain-shadow of the row below, so as to mobilise the same percentage of the ground for infiltration as was available prior to the installation of PV Arrays.

⁴⁸⁵¹⁷⁰ The PV Array will comprise rows of solar panel modules mounted on metal frames and pile driven into the ground to limit the footprint of PV array units.

⁴⁸⁶¹⁷¹ The panels would be mounted at approximately 0.5 m from the ground at the lowest point, depending on modelled flood depths, there will be a requirement to raise the leading edge of the PV arrays in some areas.

⁴⁸⁷¹⁷² Installation of the PV arrays does not involve the introduction of hardstanding at ground level meaning the superficial cover for the majority of the Site will remain the same as the baseline.

⁴⁰ Keele University

488173 As the baseline vegetation is arable crops the establishment of grassland will be beneficial in terms of vegetation cover and soil stabilisation, as the land will not be tilled.

489174 Additionally, the PV array tables will have regular rainwater gaps to prevent water being concentrated along a single drip line. As such, rainfall landing on the solar panels will drain through rainwater gaps and infiltrate into the ground beneath and between each row of panels, as shown in Plate A9.1.3718.

Plate A9.1.3718: Rainwater gaps on PV array table

¹⁹⁰¹⁷⁵ Control of run-off from the PV Arrays will be implemented through the land management techniques based upon RSuDS methods that will be implemented before the construction phase, in accordance with the EA's guidance⁴¹, shown in Plate A9.1.3819.

¹⁹¹¹⁷⁶ The limited installation of impermeable surfaces will prevent a significant increase in surface water run-off.

⁴¹https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/291508/scho0612buwh-e-e.pdf

Plate A9.1.3819: Established grassland and vegetation cover at Solar Farm

¹⁹²¹⁷⁷ The exact grass seed mix will be determined, as outlined in the Outline LEMP (TA A5.1 [EN010162/APP/6.4.5.1]).

¹⁹³¹⁷⁸ The grassland will be managed through an initial and long-term management plan and should be secured through the LEMP.

¹⁹⁴¹⁷⁹ The promotion of managed grassland will prevent surface water from the drip line from compacting the ground and therefore limit the potential for rilling and soil mobilisation.

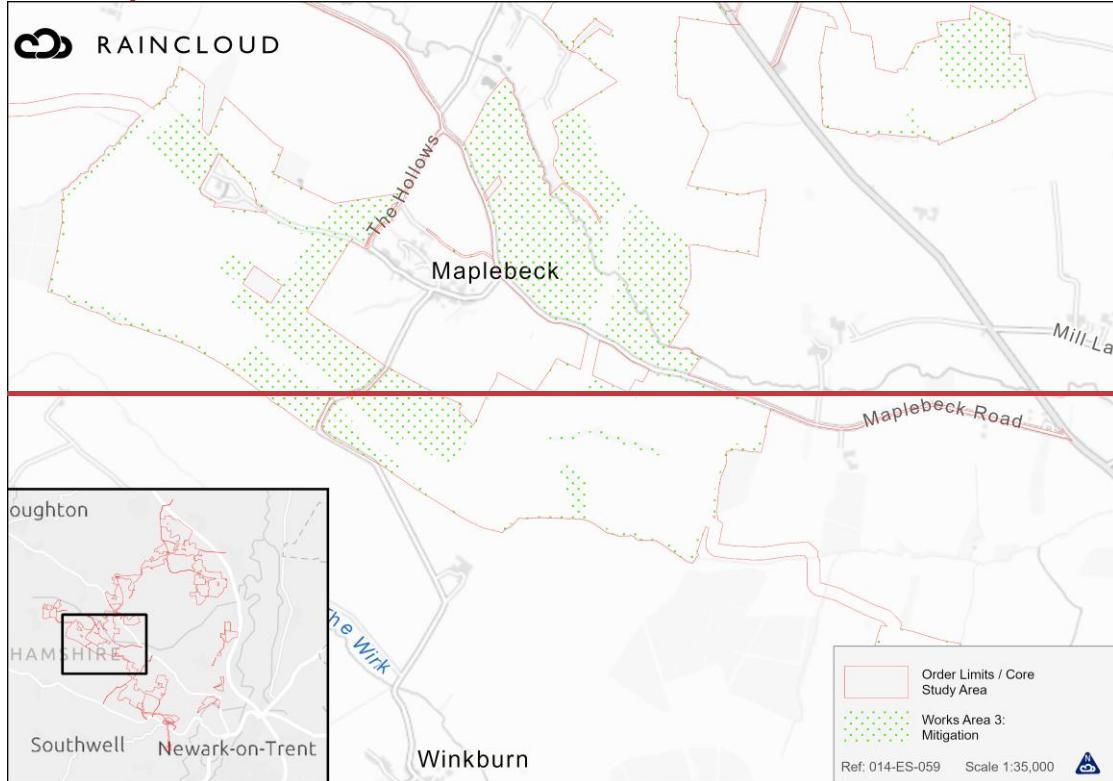
¹⁹⁵¹⁸⁰ As outlined in Section A5.5.4.5 of the oOEMP [EN010162/APP/6.4.5.5], maintenance of solar farm equipment and other regular equipment used onsite, such as any operational vehicles, tools and machinery will be carried out by the relevant operational staff. The maintenance will be carried out based on specific guidance and method statements by appropriately trained staff, in line with the required maintenance schedules. This will minimise the risk of compaction of soils and pollution of watercourses.

¹⁹⁶¹⁸¹ It should also be noted that large woodland strips will be established along with wildflower meadow, which will be largely outside the fence, as shown on the masterplan (Figure 5.2 [EN010162/APP/6.3.5.2]) and Outline LEMP [EN010162/APP/6.4.5.1]. These measures will also help to slow surface water before entering the wider hydrological network.

¹⁹⁷¹⁸² As discussed in Section A9.1.1.7, several communities surrounding the Development suffer from pluvial flooding as a result existing runoff pathways concentrating flows to urban areas during heavy or prolonged precipitation events.

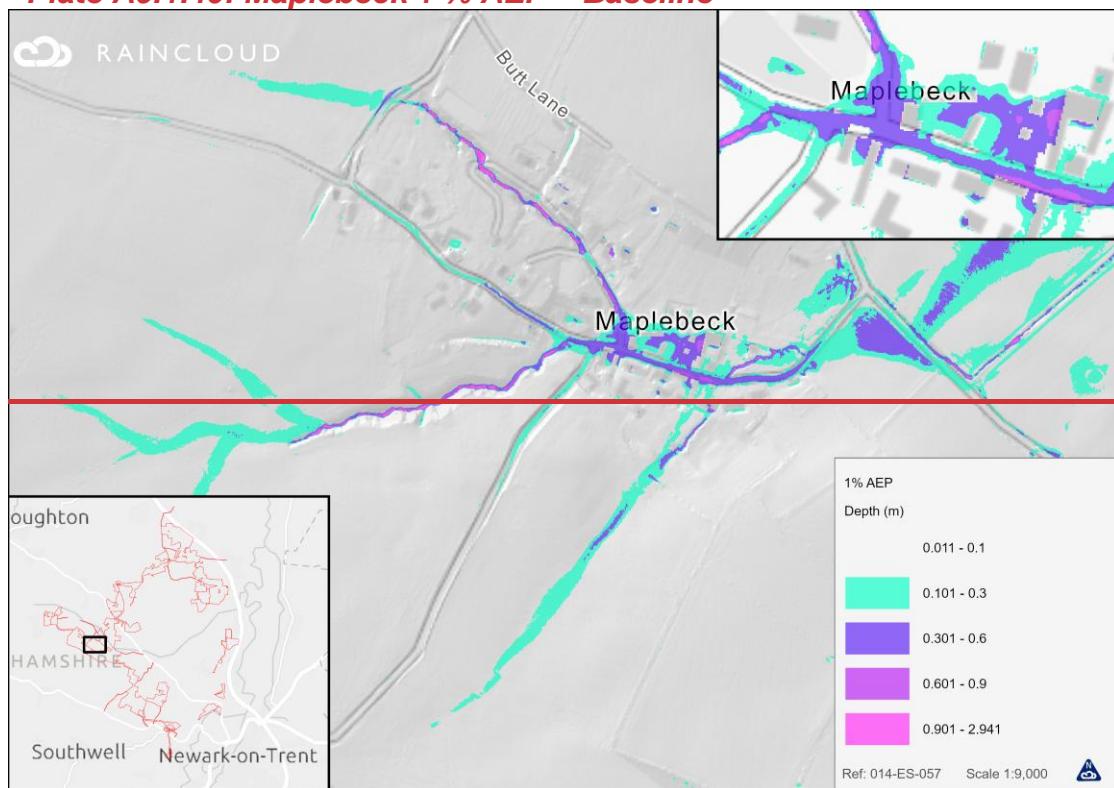
198183 Maplebeck has a history of pluvial flooding as run-off cascades from the elevated agricultural land to the west, north and south.

199184 A 2D direct rainfall model was established to model the baseline flood routes and depths and model the effect of the introduction of grassland under the PV arrays and woodland planting.


200185 Areas of woodland and grassland were attributed a Manning's N roughness value and added to the model as polygons.

201186 The OS buildings and roads layers were also stamped into the LIDAR data to ensure flow pathways were accurately represented.

202187 Mass balance error for all simulations was 0.0 %.


203188 [PlateFigure A9.1.39](#) [22 in Appendix D](#) shows the location of RSuDS measures within the Development in relation to Maplebeck.

[PlateFigures A9.1.39: RSuDS / enhancement areas associated with the Development](#)

204189 [Plates A9.1.40](#) [23 and A9.1.41](#) [24 in Appendix D](#) show the maximum flood depth for the 1 % AEP for the baseline 1 % AEP and 1 % AEP with wildflower / grass mix under the PV array scenarios.

~~Plate A9.1.40: Maplebeck 1 % AEP – Baseline~~

~~Plate A9.1.41: 1 % AEP – Grass Mix under PV Arrays~~

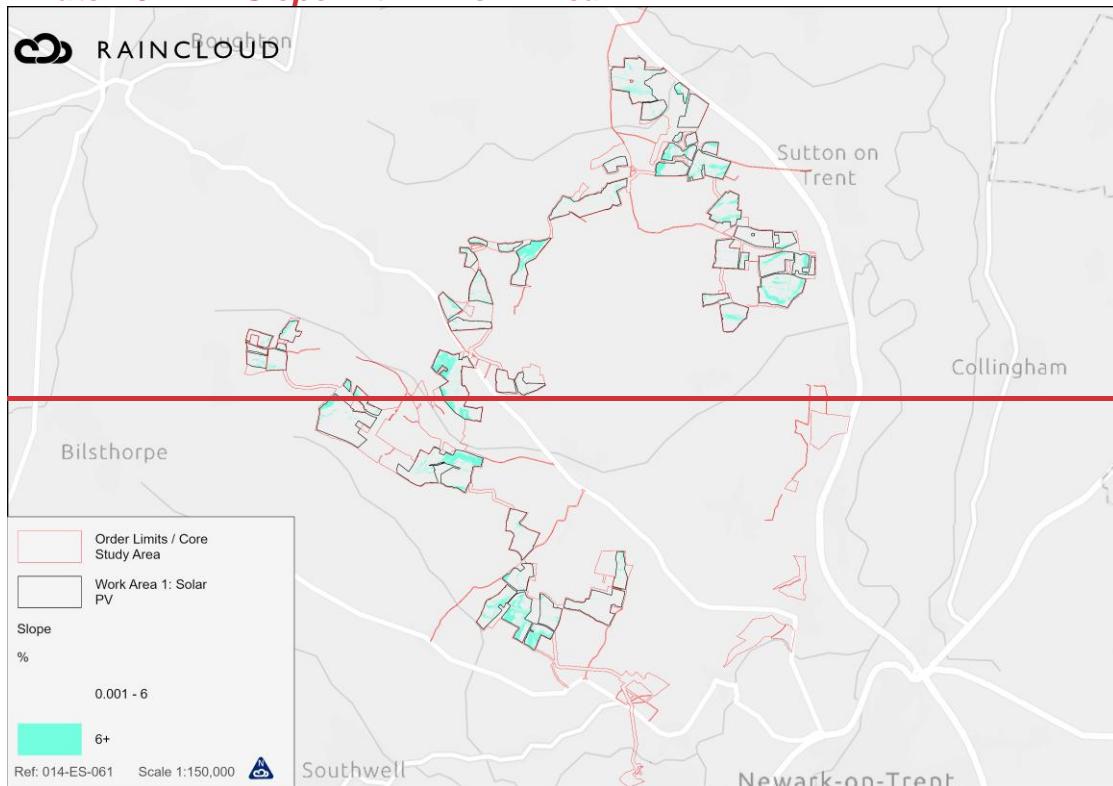
205190 Grassland has a marginal benefit in reducing maximum flood depths for the 1 % AEP event compared to the baseline scenario.

206191 There is an opportunity to provide additional natural flood management (NFM) measures within the CSA which have a positive effect on the

downstream environment, without necessarily improving the flooding situation within the CSA and the measures will be brought forward as part of a separate Town and Country planning application.

207192 The cumulative effect of the Development and the NG+ NFM schemes is assessed in ES Chapter 9: Water Resources [EN010162/APP/6.2.9].

A9.1.3.2.1 Steeper Slopes


208193 It is reported in Schwyter & Vaughan (Soil Science Laboratory Manual)⁴² that the amount of soil erosion is directly related to the amount of surface water run-off, which depends on the water infiltration rate and the percentage of the slope. The steeper the slope and the less rapid the water infiltration rate, the more rapid the water run-off rate for a given soil.

209194 It is noted within the Soil Science Laboratory Manual that most soils will generate rapid or very rapid surface water run-off with slopes between 6 to 12 %, regardless of soil type.

210195 80 % of Work Area 1: Solar PV is on slopes of less than 6 %.

211196 Work Area 1: Solar PV is mostly shallow sloping with steeper slopes confined to the banks of drainage ditches and isolated areas, as shown in [PlateFigure A9.1.42](#)²²⁵ in Appendix D.

Plate A9.1.42: Slope within Work Area 1

212197 In areas where PV Arrays run parallel to a slope of 6 % or greater, active measures such as berms, stone filter drains (as shown in [Plate A9.1.43](#)²⁰) and swales will be incorporated to slow the flow of surface water run-off as part of construction SuDS, which could be retained for the operational phase of the Development. Filter drains would measure 200 mm

⁴² Introduction to Soil Science Laboratory Manual

width and 300 mm depth in the form of a linear scrape which is backfilled with clean, uncompacted Type 2 or 3 aggregate.

Plate A9.1.4320: Example filter drains at solar farms

A9.1.4 WORK AREA 5A: BESS SURFACE WATER MANAGEMENT

213198 This section outlines how the Development will be designed to meet the requirements of:

- National Planning Practice Guidance (2014) (as amended 2022);
- The revised NPPF (as amended 2024);
- The Environment Act (2021);
- Non-Statutory Technical Standards for Sustainable Drainage Systems (2015);
- Environment Agency (EA) - Rural Sustainable Drainage Systems (RSuDS)⁴³;
- EA - Pollution Prevention Guidelines (PPG) Controlled Burn: PPG28 (archived but still relevant);
- CIRIA - Containment systems for the prevention of pollution. Secondary, tertiary and other measures for industrial and commercial premises (C736);
- National Fire Chiefs Council (NFCC) – Grid Scale Battery Energy Storage System planning – Guidance for FRS;
- NFCC – Grid Scale Battery Energy Storage System planning – Guidance for FRS - July 2024 Draft Revision⁴⁴;
- NFPA 855 Standard for the Installation of Stationary Energy Storage Systems⁴⁵;
- Department for Business and Trade - UK Battery Strategy (2023)⁴⁶;
- Newark & Sherwood District Council Strategic Flood Risk Assessment Update (2016)⁴⁷; and
- Nottinghamshire Local Flood Risk Management Strategy (LFRMS) 2021-2027⁴⁸.

214199 Runoff from the Site shall, in principle, replicate the quality and quantity of the runoff from the Site in its “greenfield” state, in so far as it is reasonable and practicable.

215200 The existing greenfield average annual flood (Q_{BAR}) runoff was calculated as 4 l/s/ha, using the Interim Code of Practice for Sustainable Drainage Systems (ICP SuDS) Mean Annual Flood and Institute of Hydrology (IoH) 124 methods using Info Drainage software, as shown in Plate A9.1.44.21

⁴³ <https://assets.publishing.service.gov.uk/media/5a7b956b40f0b645ba3c541b/scho0612buwh-e-e.pdf>

⁴⁴ <https://nfcc.org.uk/consultation/draft-grid-scale-energy-storage-system-planning-guidance/>

⁴⁵ <https://www.nfpa.org/codes-and-standards/all-codes-and-standards/list-of-codes-and-standards/detail?code=855>

⁴⁶ <https://www.gov.uk/government/publications/uk-battery-strategy>

⁴⁷ <https://www.newark-sherwooddc.gov.uk/sfraupdate/>

⁴⁸ <https://www.nottinghamshire.gov.uk/media/4346719/nottinghamshire-local-flood-risk-mangement-strategy-2021-27.pdf>

Plate A9.1.4421: QBAR (Greenfield) Rate / ha

UK and Ireland Rural Runoff Calculator

ICP SUDS / IH 124	ADAS 345	FEH	ReFH2	Greenfield Volume												
Method <input checked="" type="radio"/> ICP SUDS <input type="radio"/> IH 124 Area (ha) <input type="text" value="1.00"/> SAAR (mm) <input type="text" value="600.0"/> <input type="button" value="Map"/> Soil <input type="text" value="0.470"/> Region <input type="text" value="Region 4"/> <input type="button" value="..."/>																
Additional Options Urban <input type="text" value="0.000"/> Return Period (years) <input type="text" value="0"/> Growth Curve <input type="text" value="(None)"/> <input type="button" value=""/> <input type="button" value=""/>																
<input type="button" value="Calculate"/>																
Results <table border="1"> <thead> <tr> <th>Region</th> <th>QBAR Rural (L/s)</th> <th>QBAR Urban (L/s)</th> <th>Q 1 (years) (L/s)</th> <th>Q 30 (years) (L/s)</th> <th>Q 100 (years) (L/s)</th> </tr> </thead> <tbody> <tr> <td>Region 4</td> <td>4.0</td> <td>4.0</td> <td>3.3</td> <td>7.9</td> <td>10.4</td> </tr> </tbody> </table>					Region	QBAR Rural (L/s)	QBAR Urban (L/s)	Q 1 (years) (L/s)	Q 30 (years) (L/s)	Q 100 (years) (L/s)	Region 4	4.0	4.0	3.3	7.9	10.4
Region	QBAR Rural (L/s)	QBAR Urban (L/s)	Q 1 (years) (L/s)	Q 30 (years) (L/s)	Q 100 (years) (L/s)											
Region 4	4.0	4.0	3.3	7.9	10.4											

216201 A SuDS option which will utilise a piped network to drain the BESS Compound to lined / compacted clay layer detention basins is proposed as a way of attenuating the increase in surface water run-off rates at the Development, with a positive discharge to the existing drainage ditch network onsite.

217202 In the rare event of a battery unit fire the NFCC guidance recommends the ability to capture firewater and not have uncontained releases to the hydrological environment.

218203 Discharge will be throttled using a Hydro-Brake or similar flow restriction device.

219204 It will be the responsibility of the Development operator to maintain effective drainage measures and rectify drainage measures that are not functioning adequately. A nominated person will also have responsibility for reporting on the functionality of drainage measures. This is secured through the Outline Operational Environmental Management Plan (oOEMP, TA A5.5 [EN010162/APP/6.4.5.5]).

220205 Where areas remain positively drained through the lifetime of the Development, the SuDS measures serving these areas will be checked on a regular basis. Should drainage measures require dredging or unblocking, this will be undertaken as soon as practicable by a local contractor engaged by the management company.

A9.1.4.1 FIRE SUPPRESSION

A9.1.4.1.1 Procedure

221206 In the rare event of a battery fire, the procedure outlined in the Outline Fire Safety Management Plan (included in the ES as TA A5.4 [EN010162/APP/6.4.5.4]) will be followed.

222207 The Development operator will follow the accepted strategy of allowing a battery related fire to self-consume, reducing unnecessary risk of injury to site and firefighting personnel.

223208 Should a fire occur, the effected enclosure will be allowed to self-consume until the fire is extinguished through consumption of the combustible materials within the battery container / enclosure. The firefighting procedure will be to apply water for fire suppression to adjacent BESS enclosures as a way of reducing the temperature of the adjacent containers.

224209 As water will not be directly applied to affected BESS container, there is limited potential for suppression water to become contaminated.

A9.1.4.2 FIRE SUPPRESSANT VOLUME

225210 Based on recommendations in NFPA 855 Standard for the Installation of Stationary Energy Storage Systems and NFCC – Grid Scale Battery Energy Storage System planning – Guidance for FRS, a burn time of 2 hours and a requirement of 1,900 l/min of fire suppression water has been used to calculate the volume of fire suppressant water required to be stored onsite in the event of a container fire.

226211 This equates to 228 m³ of storage.

227212 The SuDS structures serving each catchment of the BESS compound will be sized to accommodate the 1 % AEP + 40 % CC or 228 m³, and this will be sufficient for storing the full fire suppressant volume.

228213 ~~A~~An automatic penstock will be placed on the outlet of the SuDS structure and would be shut off in the event of a fire suppression event. It would remain closed until testing of the captured water has taken place. Water will then either be removed offsite by tankers to a licenced facility or discharged to the unnamed field drain (subject to agreement with the EA). Penstocks will be regularly tested and serviced when required.

229214 There will also be a lined (clay or synthetic liner) holding basin available for spent firefighting water to be pumped to in the event of a battery fire during heavy rainfall. As such, the SuDS system will not reach capacity during such an event.

215 ~~Following a fire-fighting event, the lining or clay base of the detention basin could be replaced if testing identified that contaminants were present.~~

230216 It is recommended that the BESS Compound has a shallow bund or cut-off perimeter drain to limit the potential for run-off to leave the Development and drain to the cellular storage.

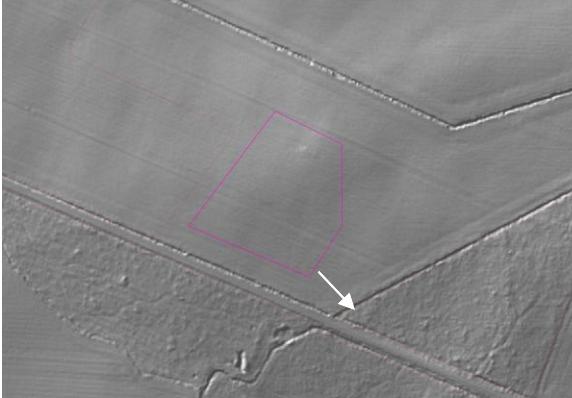
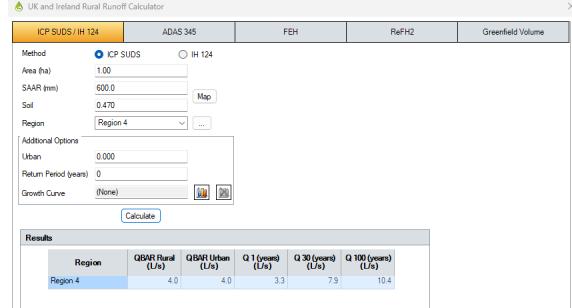
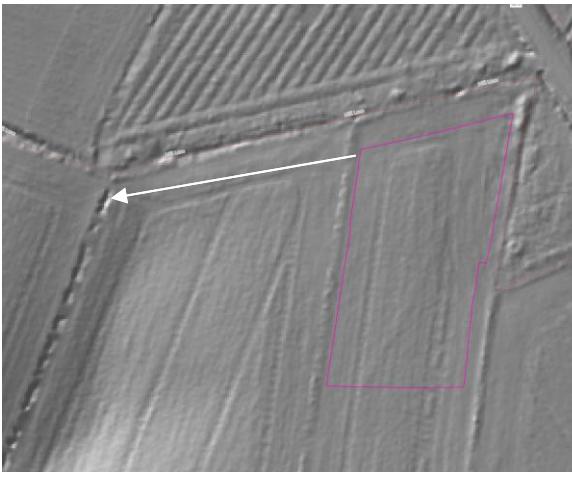
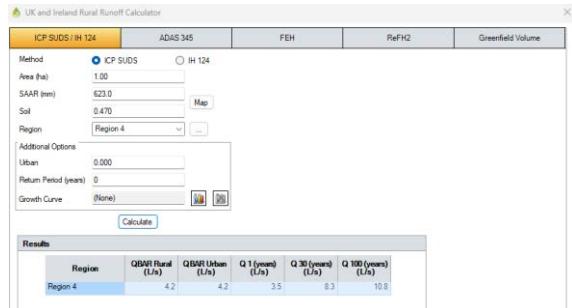
A9.1.5 WORK AREA 5B: 400 KV SUBSTATION

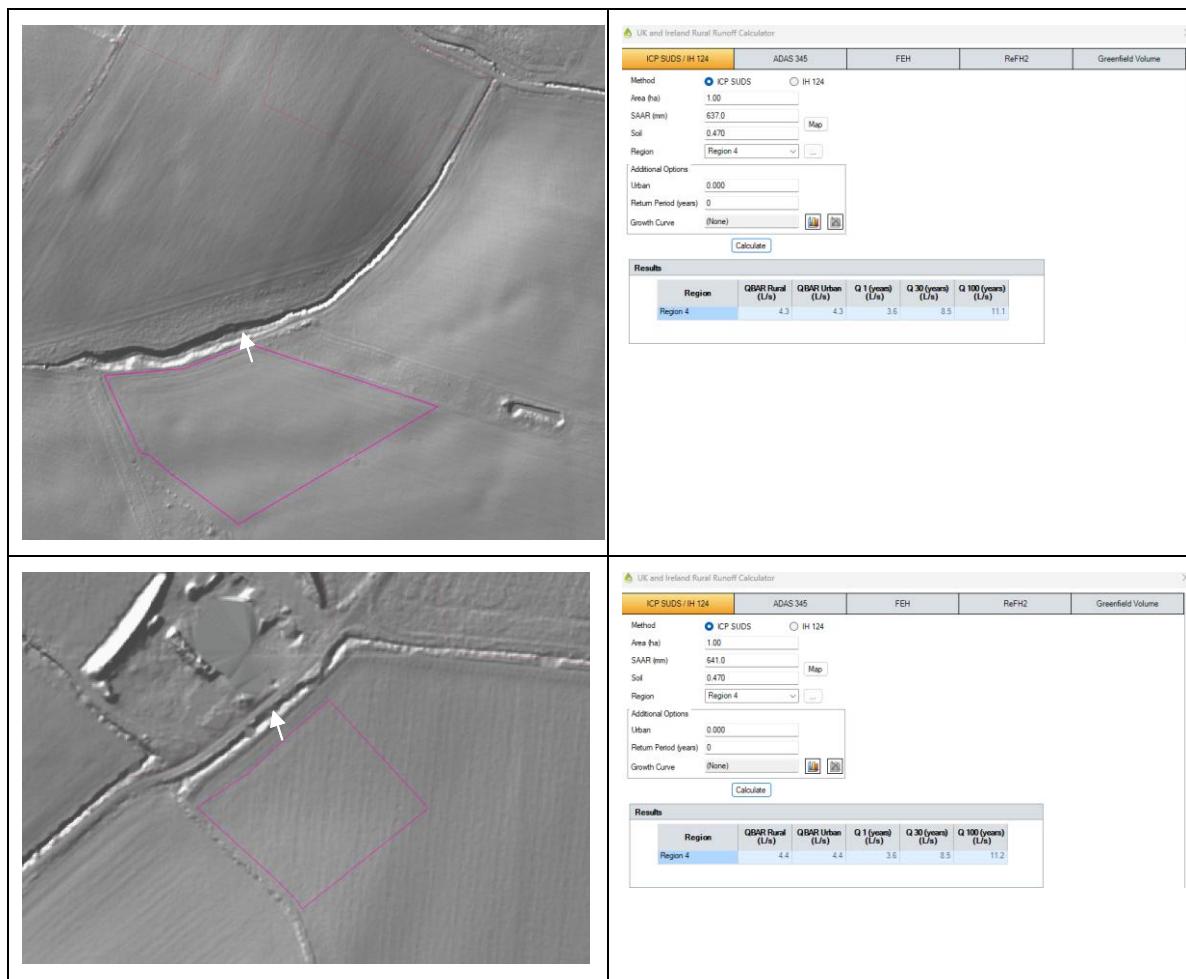
231217 Surface water for Work Area 5b: Substations will also be managed in a similar manner to Work Area 5a: BESS, i.e. will have a drainage system designed to attenuate the 1 % AEP + 40 % CC.

232218 The SuDS system will discharge at greenfield rate to a watercourse / field drain, in accordance with the hierarchy of disposal options outline in the SuDS Manual.

A9.1.6 WORK AREA 4: SUBSTATIONS SURFACE WATER MANAGEMENT

233219 Surface water for Work Area 4: Substations will also be managed in a similar manner to Work Area 5a: BESS, i.e. will have a drainage system designed to attenuate the 1 % AEP + 40 % CC.





234220 Infiltration testing at each substation compound within Work Area 4 was undertaken in March to April 2025 and concluded that infiltration is not a viable disposal option due to the presence of clays and mudstone, which is essentially impermeable.


235221 Infiltration testing results are provided in Appendix B of this FRA.

236222 The SuDS system will discharge at Q_{BAR} to a watercourse / field drain, in accordance with the hierarchy of disposal options outline in the SuDS Manual.

237223 Discharge rates per hectare (ha), derived from the IH124 method, and likely discharge destinations are provided in Table A9.1.6.

Table A9.1.6: Work Area 4 runoff destinations and rates

Work Area 4 Discharge Location	Rate (l/s/ha)												
	<table border="1"> <thead> <tr> <th>Region</th> <th>Q_{BAR} Rural (l/s)</th> <th>Q_{BAR} Urban (l/s)</th> <th>Q 1 (years)</th> <th>Q 30 (years)</th> <th>Q 100 (years)</th> </tr> </thead> <tbody> <tr> <td>Region 4</td> <td>4.0</td> <td>4.0</td> <td>3.3</td> <td>7.9</td> <td>10.4</td> </tr> </tbody> </table>	Region	Q_{BAR} Rural (l/s)	Q_{BAR} Urban (l/s)	Q 1 (years)	Q 30 (years)	Q 100 (years)	Region 4	4.0	4.0	3.3	7.9	10.4
Region	Q_{BAR} Rural (l/s)	Q_{BAR} Urban (l/s)	Q 1 (years)	Q 30 (years)	Q 100 (years)								
Region 4	4.0	4.0	3.3	7.9	10.4								
	<table border="1"> <thead> <tr> <th>Region</th> <th>Q_{BAR} Rural (l/s)</th> <th>Q_{BAR} Urban (l/s)</th> <th>Q 1 (years)</th> <th>Q 30 (years)</th> <th>Q 100 (years)</th> </tr> </thead> <tbody> <tr> <td>Region 4</td> <td>4.2</td> <td>4.2</td> <td>3.5</td> <td>8.3</td> <td>10.8</td> </tr> </tbody> </table>	Region	Q_{BAR} Rural (l/s)	Q_{BAR} Urban (l/s)	Q 1 (years)	Q 30 (years)	Q 100 (years)	Region 4	4.2	4.2	3.5	8.3	10.8
Region	Q_{BAR} Rural (l/s)	Q_{BAR} Urban (l/s)	Q 1 (years)	Q 30 (years)	Q 100 (years)								
Region 4	4.2	4.2	3.5	8.3	10.8								

224 The detailed design of the SuDS features to serve Work Area 4 is secured through a requirement of the DCO.

A9.1.7 CONCLUSIONS & RECOMMENDATIONS

238225 The Order Limits are mostly located in Flood Zone 1 (89.99 %).

239226 All new aboveground infrastructure within Work Areas 1, 4 and 5 are located in Flood Zone 1, with the exception of Field 182/184 which is located in Flood Zone 2 as of 28th November 2025.

240227 Infrastructure within all Work Areas will be located outside the 2076 and 2098 0.5 % AEP River Trent tidal breach event.

241228 No built aspects in Work Area 1: Solar PV, Work Area 4: Substations, Work Area 5a: BESS or Work Area 5b: 400 kV substation are located within the extent of the 1 % AEP + 23 % CC (30 % CC used as a proxy) or 1 % AEP + 39 % CC events.

242229 Work Area 6: National Grid Staythorpe Substation is located within the 1 % AEP + 23 % CC extent (30 % CC used as proxy) and is modelled to flood to depths of less than 0.1 m (i.e. within the main platform area).

243230 Similarly, using the 39 % CC allowance as a sense check, Work Area 6 could flood to a nominal depth of less than 0.1 m (i.e. within the main platform area).

244231 The National Grid Staythorpe Substation has private hard (walls) and soft (embankments) defences to a level of 13.10 m AOD. As such, Work Area 6 is unlikely to be inundated during the 1 % AEP + 30 % CC and 39 % CC events, should the Development operate marginally into the 2080s epoch.

245232 Work Area 7 will utilise the existing infrastructure associated with the Staythorpe BESS (currently under construction). The Staythorpe BESS design included flood resilience measures and the critical aspects of the scheme are located outside the 1 % AEP + 30 % CC and 39 % CC extents. As such, connecting the Development in Work Area 7 to the existing 400 kV infrastructure will be within an area not modelled to flood during the 1 % AEP + 30 % CC and 39 % CC event.

246233 All electrically sensitive infrastructure associated with the Development will be located above the modelled depths for the 1 % AEP + climate change pluvial flood event.

247234 The extent of reservoir flooding (Wet Day scenario) which interacts with the Development largely follows the corridor of the River Trent and presents a residual risk to the Development.

248235 The Development is classified as Essential Infrastructure and is therefore compatible with Flood Zones 1, 2 and 3.

249236 Groundwater levels are likely to be variable across the CSA, and were struck at 1. 8 to 3 m BGL within Work Area 5a: BESS. BESS units will not be flush to the ground and will be elevated from the ground by approximately 300 mm. As such the Development will remain safe and operational should groundwater emerge at ground level.

250237 Surface water run off from Work Area 1: Solar PV will be managed through RSuDS techniques such as grassland / wildflower, which will act to bind soils, slow surface water and increase water quality compared to the baseline scenario. Where Solar PV in Work Area 1 is located on slopes of 6

% or greater, then additional measures to slow runoff, such as filter drains and berms, will be implemented.

251238 In respect of flood risk matters, the Development is compliant with the NPS EN-1, EN-3, EN-5, NPPF and local planning policy, including Core Policy 10 Climate Change of the Amended core strategy DPD.

APPENDIX A: EA CORRESPONDENCE

Our Ref: EMD-331357

Via Email

Previous Ref: EMD-307955

Date: 30 November 2023

Dear [REDACTED],

Enquiry regarding - Product 6- Missing data near Averham.

Thank you for your enquiry which was received on 24 October 2023.

We respond to requests under the Freedom of Information Act 2000 and Environmental Information Regulations 2004.

The JFLOW has been used to create flood zone 3 in this area, along with the older version of the River Greet model from 2008.

You can download the JFLOW model results using the link below and will need to look at grid square SK75:

[Defra Data Services Platform](#)

Please refer to [Open Government Licence](#) which explains the permitted use of this information.

Please get in touch if you have any further queries or contact us within two months if you'd like us to review the information we have sent.

Yours sincerely

[REDACTED]
Customers & Engagement Officer
East Midlands

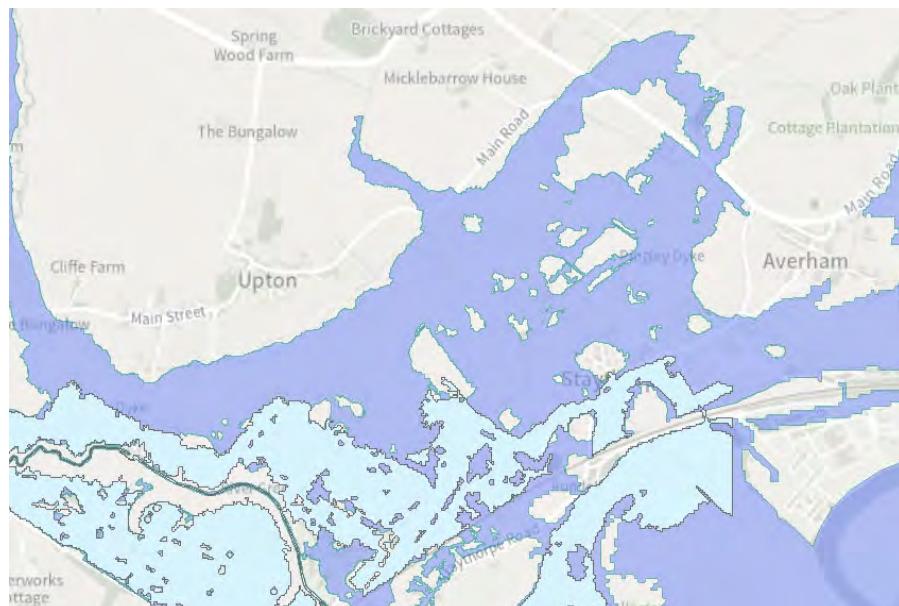
For further information please contact the Customers & Engagement Team on 02084 747770

Direct e-mail:- EMDenquiries@environment-agency.gov.uk

Via Email

Our Ref: EMD-339002

Your Ref:


Date: 16 January 2024

Dear [REDACTED]

Enquiry regarding – flood data around Averham

Thank you for your enquiry which was received on 14 December 2023. Please see the response from our technical team below:

We are sorry that we cannot explain why Flood Zone 3 is of a lesser extent than the 2004 1 % AEP JFLOW outline to the north west of Averham. Flood Zone 3 in the wider area has utilised part of the River Greet 2008 model but this is of a smaller extent than the current Flood Zone 3 as shown below (Flood Zone 3 in darker blue and the 1% AEP 2008 River Greet model in lighter blue). The Flood Zone outline does not align to a modelled outline or recorded flood outline. The Flood Zones in this area were last updated in 2014 and unfortunately our records do not answer your question.

We will be updating our flood risk map products: Flood Zones (on Flood Map for Planning), Risk of Flooding from Rivers & Sea (RoFRS) and Risk of Flooding from Surface Water (RoFSW) in 2024/5 as part of the new National Flood Risk Assessment (NaFRA2). This should result in improvements to our mapping products, especially where we do not currently have any detailed local modelling. This may address the query you have with our flood risk products. Our new National Flood Risk Assessment

will bring many improvements to our flood risk information, including updated national modelling (which uses a better representation of topography and finer level of detail) as well as incorporating local detailed modelling where we have it. Therefore, we would advise waiting until after these are published to check our new flood risk information. In preparation for these changes, there is currently a pause on updates to these mapping products until NaFRA2 is released.

Our technical team are also happy to speak with you further on this matter, if you'd like to schedule a call.

We respond to requests under the Freedom of Information Act 2000 and Environmental Information Regulations 2004.

Please refer to [Open Government Licence](#) which explains the permitted use of this information.

Please get in touch if you have any further queries or contact us within two months if you'd like us to review the information we have sent.

Yours sincerely

[REDACTED]
Customers & Engagement Officer
East Midlands

For further information please contact the Customers & Engagement Team on 02084 747770

Direct e-mail:- EMDenquiries@environment-agency.gov.uk

APPENDIX B: INFILTRATION TESTING

Environmental
Geotechnical
Specialists

SOAKAWAY LETTER REPORT

job number

date

site address

written by

checked by

issued by

Please consider the environment before printing this report.

Environmental
Geotechnical
Specialists

Rogers Geotechnical Services Ltd
Offices 1 & 2 Barncliffe Business Park, Near Bank, Shelley, Huddersfield, HD8 8LU
01484 604354 Company No. 5130864

<ENVIRONMENTAL><GEOTECHNICAL>

Contents

	Page
1. Introduction	2
2. Limitations	2
3. Fieldworks	2
4. Geology	3
5. Strata Conditions	3
6. Insitu Testing	3
6.1 Soakaway Test	3
7. Discussion	4
8. References	4

Appendices

1. Site Plan
2. Trial Pit Records
3. Trial Pit Photographs
4. Soakaway Results

Please consider the environment
before printing this report.

Report on Soakaway Testing

Location: Land off Caunton Road
Newark, Nottinghamshire, NG22 0BH

For: Elements Green Trent Ltd

Report No. C4946/25/E/7542 Report Date: May 2025

For and on behalf of **Rogers Geotechnical Services Ltd**

Steven Hale BSc FGS Geo-environmental Technician	Imran Sакoor BEng FGS Geo-environmental Engineer	

Report Summary¹

Item	Comments	Section
Geology	Superficial Geology – none. Solid Geology – Mercia Mudstone Group.	4.
Strata Conditions	Nominal thickness of topsoil overlaying clay representative	5.
Groundwater	No water strikes noted during investigation.	5.
Suitability of Soakaways	Not recommended.	7.

¹ This summary should not be relied upon to provide a comprehensive review. All of the information contained in this document should be considered.

1. Introduction

- i. We thank you for your request to undertake percolation testing at the above-mentioned site and take pleasure in enclosing the results of this work. The investigation was undertaken on the 8th April 2025 in accordance with your instruction to proceed. The site is centred on grid reference 472060, 362046. This report describes the work undertaken, presents the data obtained and discusses the results of the tests

2. Limitations

- ii. The recommendations made and opinions expressed in this report are based on the ground conditions revealed by the site works, together with an assessment of the site. Whilst opinions may be expressed relating to sub-soil conditions in parts of the site not investigated, for example between trial pit positions, these are for guidance only and no liability can be accepted for their accuracy.
- iii. This report has been prepared in accordance with our understanding of current best practice. However, new information or legislation, or changes to best practice may necessitate revision of the report after the date of issue.

3. Fieldworks

- iv. Three trial pits were excavated in order to undertake soakaway testing, the positions of which are shown in Appendix 1. The soakaway tests were undertaken at the base of the pit at depths rational to the construction of soakaways. The soils exposed in the trial pits were logged on site in general accordance with BS5930: 2015 +A1: 2020, and full descriptions are given on the trial pit records which are presented in Appendix 2. Photographs of the trial pits are included within Appendix 3.
- v. Once excavations were completed, the trial pits were carefully re-instated with the risings. Whilst every care was taken during the infilling process, including compacting of the infill at regular intervals with the arm of the excavator, it should be appreciated that some mounding of the surface may have resulted. Moreover, the infilled soils may be subjected to settlement over time, such that a depression in the surface may also occur. Therefore, the locations of any pits undertaken in this investigation should be conveyed to the current site user, as the mounds or depressions associated with the pits may present a risk to current site operations. Furthermore, it must be realised that the infilled pits represent an area of disturbance within the site soils, thus the soils at the pit locations may vary characteristically compared to the undisturbed ground.

4. Geology

vi. The available published geological data for the site has been examined and the following table presents the anticipated geology.

Table 1: Geological Data for the Site

Strata Type	Strata Name ²	Previous Name ³	Description ³
Superficial Geology	-	-	None indicated beneath the site.
Solid Geology	Mercia Mudstone Group	Red Marl	Dominantly red, less commonly green-grey, mudstones and subordinate siltstones with thick halite-bearing units in some basinal areas.

5. Strata Conditions

vii. In accordance with the geology of the area, the succession has been shown to include the following:

Table 2: Generalised Strata Profile

Depth m below ground level to underside of layer	Strata Type	Positions Layer Revealed	Groundwater Strikes m below ground level
0.30 – 0.35	TOPSOIL (Soft, dark brown, slightly sandy, slightly gravelly, clayey SILT)	All	None
0.75 – +1.60	Firm, reddish brown, slightly gravelly, silty CLAY [WEATHERED MERCIA MUDSTONE GROUP]	All	None
+1.25	Firm, grey occasionally mottled reddish brown, very gravelly, silty CLAY. [WEATHERED MERCIA MUDSTONE GROUP]	SA01	None

⁺' denotes that the strata extended below the termination depth of the investigated positions, thus the extent of the deposit is only proven to the depths indicated.

6. Insitu Testing

6.1 Soakaway Test

viii. On reaching the elected soakaway test depth, the pit was trimmed and squared as much as practicable. Water was then introduced into the pit at a controlled rate to prevent collapse of the sides and the level monitored at time intervals relative to a reference bar at ground level. The results obtained from the soakaway tests are presented at Appendix 4 and are summarised below:

² Sources: British Geological Survey (NERC) Map Sheets 113; Ollerton; Solid and Drift Edition, and Onshore Geoindex [online resource from www.bgs.ac.uk]

³ Sources: British Geological Survey (NERC) Lexicon of Named Rock Units [online resource from www.bgs.ac.uk]

Table 3: Soakaway Test Results

Location	Soakage Area Dimensions (average) (m)	Depths of soaked strata (m)	Soil Description (of soaked strata)	Infiltration Rate (m/s)	*Drainage Characteristics
SA01	0.30 x 1.60	0.97 to 1.25	Side – Very gravelly, silty CLAY Base – Presumed MUDSTONE bedrock	-	Practically impermeable
SA02	0.30 x 1.60	0.91 to 1.60	Side – Slightly gravelly, silty CLAY Base – As above	-	Practically impermeable
SA03	0.30 x 1.70	0.99 to 1.60	Side – Slightly gravelly, silty CLAY Base – As above	-	Practically impermeable

ix. During the soakaway tests the water level did not achieve a fall from 75% to 25% of the effective depth of the storage volume in all three trial pits. In all tests, the water level did not move, as such, the tests could not be completed within the scope of the method provided in BRE Digest 365 due to the poor soakage rate of the exposed soils. Due to the negligible water movement it was not possible to extrapolate the results obtained in order to obtain a soil infiltration rate.

7. Discussion

x. The soils encountered beneath the topsoil were found to be typical of the weathered fraction of the underlying Mercia Mudstone Group. The strata conditions and subsequent drainage characteristics appear to be comparable across the site. In this instance, the infiltration testing has revealed that the soils have practically impermeable drainage characteristics. Therefore, soakaways cannot be recommended at this site and an alternative form of drainage should be adopted.

8. References

- Building Research Establishment (BRE) Digest 365, *Soakaway Design*, September 1991.
- British Standards Institution (2015 +A1: 2020) BS 5930: *Code of practice for ground investigations*, B.S.I., London.
- Barnes, G. (2000). *Soil Mechanics Principle and Practice*. 2nd ed. London: Macmillan Press Ltd, p.47.

Appendix 1

Site Plan

Notes:

Environmental
Geotechnical
Specialists

Rogers **Geotechnical** Services Ltd

Offices 1 & 2, Barncliffe
Business Park,
Near Bank,
Shelley,
Huddersfield,
HD8 8LU

Telephone: 0843 50 66 87
www.rogersgeotech.co.uk

Client:

Elements Green Trust Ltd

Job Number:

C4946/25/E/7542

Project Details:

Land off Caunton Road, Newark,
Nottinghamshire, NG23 6BA

Scale: Not to scale - reference only

Appendix 2

Trial Pit Records

Trial Pit Log

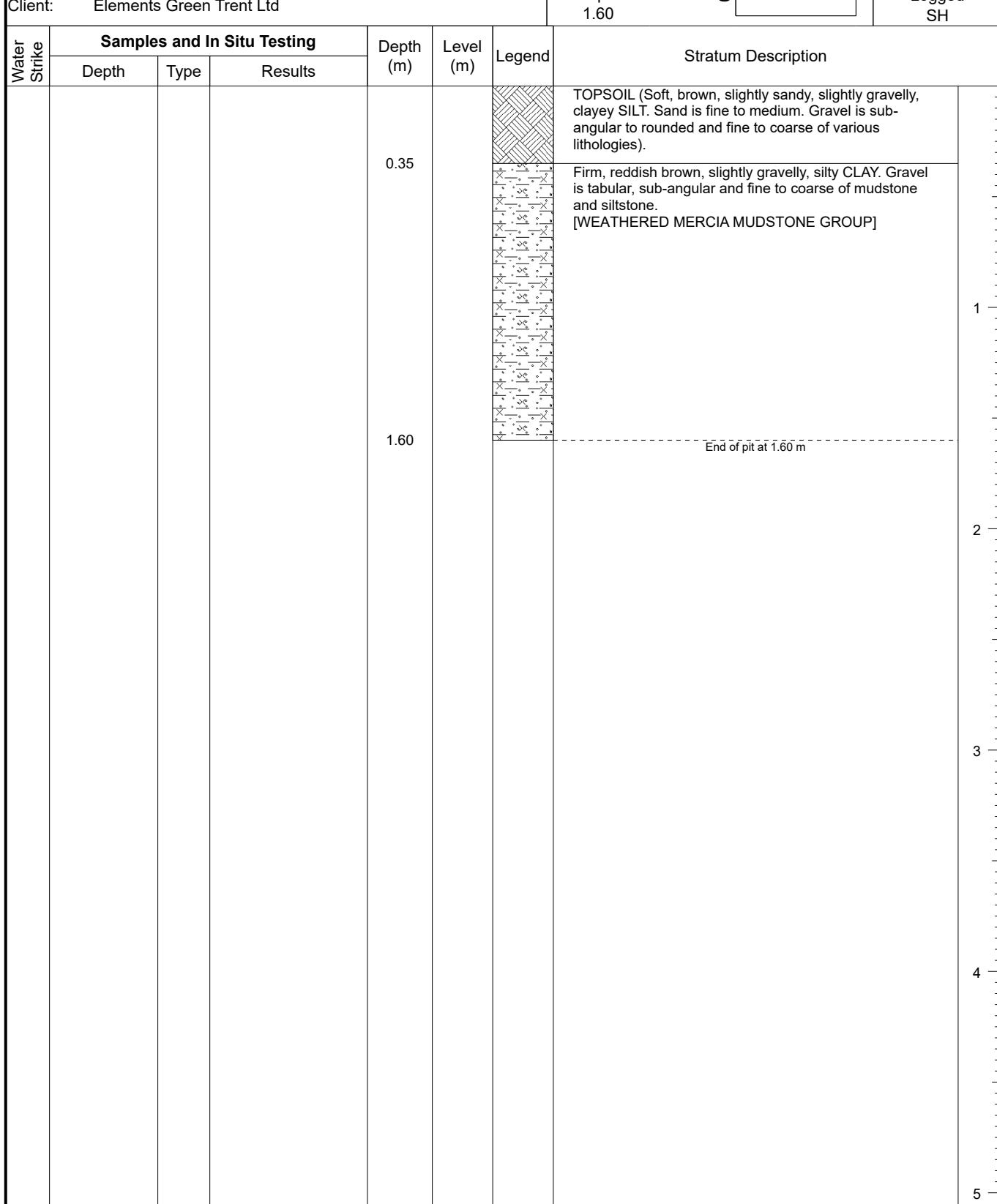
Trialpit No

SA01

Sheet 1 of 1

Project Name: Land off Caunton Road			Project No. C4946/25/E/7542			Co-ords: - Level:		Date 08/04/2025
Location: Newark, Nottinghamshire, NG23 6BA						Dimensions (m):	1.6	Scale 1:25
Client: Elements Green Trent Ltd						Depth 1.25	0.3	Logged SH
Water Strike	Samples and In Situ Testing			Depth (m)	Level (m)	Legend	Stratum Description	
	Depth	Type	Results				TOPSOIL (Soft, brown, slightly sandy, slightly gravelly, clayey SILT. Sand is fine to medium. Gravel is sub-angular to rounded and fine to coarse of various lithologies).	
				0.30			Firm, reddish brown, slightly gravelly, silty CLAY. Gravel is tabular, sub-angular and fine to coarse of mudstone and siltstone. [WEATHERED MERCIA MUDSTONE GROUP]	
				0.75			Firm, grey occasionally mottled reddish brown, very gravelly, silty CLAY. Gravel is tabular, sub-angular and fine to coarse of mudstone. [WEATHERED MERCIA MUDSTONE GROUP]	1
				1.25			Extremely weak, weathered, grey MUDSTONE recovered as gravel. [MERCIA MUDSTONE GROUP]	
				1.26			End of pit at 1.25 m	
								2
								3
								4
								5
Remarks:	1. Position scanned for services using CAT and Genny. 2. Trial pit refused on presumed bedrock.							
Stability:	Stable							

Trial Pit Log


Trialpit No

SA02

Sheet 1 of 1

Project Name:	Land off Caunton Road	Project No.	Co-ords:	-	Date
		C4946/25/E/7542	Level:		08/04/2025

Location:	Newark, Nottinghamshire, NG23 6BA	Dimensions (m):	1.6	Scale 1:25
Client:	Elements Green Trent Ltd	Depth	0.3	Logged SH

Remarks:	1. Position scanned for services using CAT and Genny.	
Stability:	Stable	

Environmental
Geotechnical
Specialists

Trial Pit Log

Trialpit No

SA03

Sheet 1 of 1

Project Name:	Land off Caunton Road	Project No.	Co-ords:	-	Date
		C4946/25/E/7542	Level:		08/04/2025

Location:	Newark, Nottinghamshire, NG23 6BA	Dimensions (m):	1.7	Scale 1:25
Client:	Elements Green Trent Ltd	Depth	0.3	Logged SH

Water Strike	Samples and In Situ Testing			Depth (m)	Level (m)	Legend	Stratum Description
	Depth	Type	Results				
				0.35			TOPSOIL (Soft, brown, slightly sandy, slightly gravelly, clayey SILT. Sand is fine to medium. Gravel is sub-angular to rounded and fine to coarse of various lithologies).
							Firm, reddish brown, slightly gravelly, silty CLAY. Gravel is tabular, sub-angular and fine to coarse of mudstone and siltstone. [WEATHERED MERCIA MUDSTONE GROUP]
				1.60			End of pit at 1.60 m
							1
							2
							3
							4
							5

Remarks:	1. Position scanned for services using CAT and Genny.	
Stability:	Stable	

Appendix 3

Trial Pit Photographs

Photo 1: SA01

Photo 2: SA01 backfilled

Environmental
Geotechnical
Specialists

Site Name:
Land off Caunton Road

Job No:
C4946/25/E/7542

t. 0843 50 666 87
www.rogersgeotech.co.uk

Photo 1: SA02

Photo 2: SA02 backfilled

Environmental
Geotechnical
Specialists

Site Name:
Land off Caunton Road

Job No:
C4946/25/E/7542

t. 0843 50 666 87
www.rogersgeotech.co.uk

Photo 1: SA03

Photo 2: SA03 backfilled

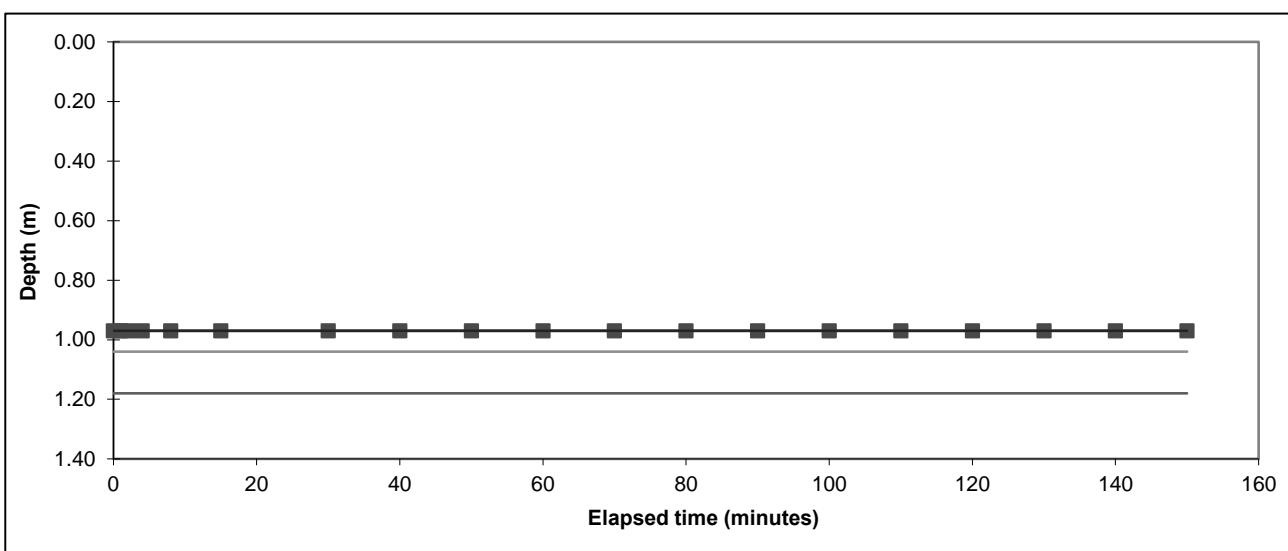
Environmental
Geotechnical
Specialists

Site Name:
Land off Caunton Road

Job No:
C4946/25/E/7542

t. 0843 50 666 87
www.rogersgeotech.co.uk

Appendix 4


Soakaway Results

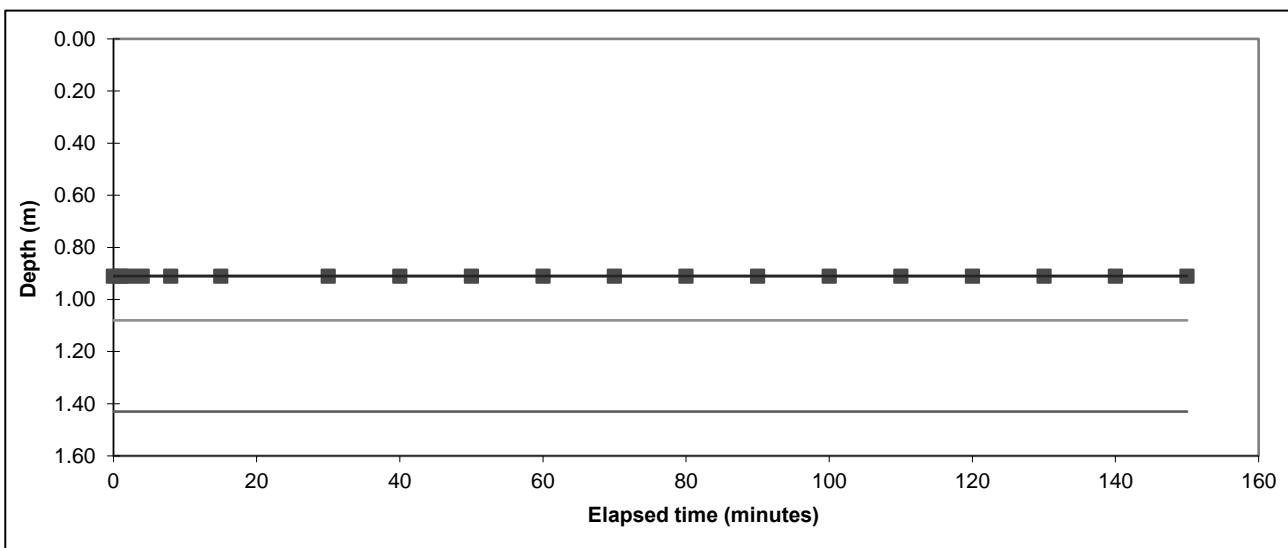
Rogers Geotechnical Services L

Soakaway Test

Trial Pit No:	SA01	Test No:	1	Date:	08.04.2025
Length (m):	1.600	Datum Height:		0.00 m agl	
Width (m):	0.30	Granular infill:	None		
Depth (m):	1.25	Porosity of infill:	1	(assumed)	
Elapsed time (minutes)	Water Depth (m below datum)	Elapsed time (minutes)	Water Depth (m below datum)		
0	0.970	110	0.970		
1	0.970	120	0.970		
2	0.970	130	0.970		
4	0.970	140	0.970		
8	0.970	150	0.970		
15	0.970				
30	0.970				
40	0.970				
50	0.970				
60	0.970				
70	0.970				
80	0.970				
90	0.970				
100	0.970				

Start water depth for analysis (mbgl):	0.97	Elapsed time (mins):	#N/A
75% effective depth (mbgl):	1.04	Elapsed time (mins):	#N/A
50% effective depth (mbgl):	1.11	Elapsed time (mins):	#N/A
25% effective depth (mbgl):	1.18	Elapsed time (mins):	#N/A
Base of soakage zone (mbgl):	1.25		
Volume outflow between 75% and 25% effective depth (m ³):			
Mean surface area of outflow (m ²):		1.01	
(side area at 50% effective depth + base area)			
Time for outflow between 75% and 25% effective depth (mins):			

Soil infiltration rate (m/s):	Test incomplete as 25% effective depth not achieved. Unable to reliably determine soil infiltration rate.
-------------------------------	---


Remarks	Results processed following BRE 365 (2007). Soil appears to be practically impermeable.
---------	--

Client:	Elements Green Trent Ltd	Job No:
Site:	Land off Caunton Road, Kersall, Newark, Nottinghamshire, NG23 6BA	C4946/25/E/7542

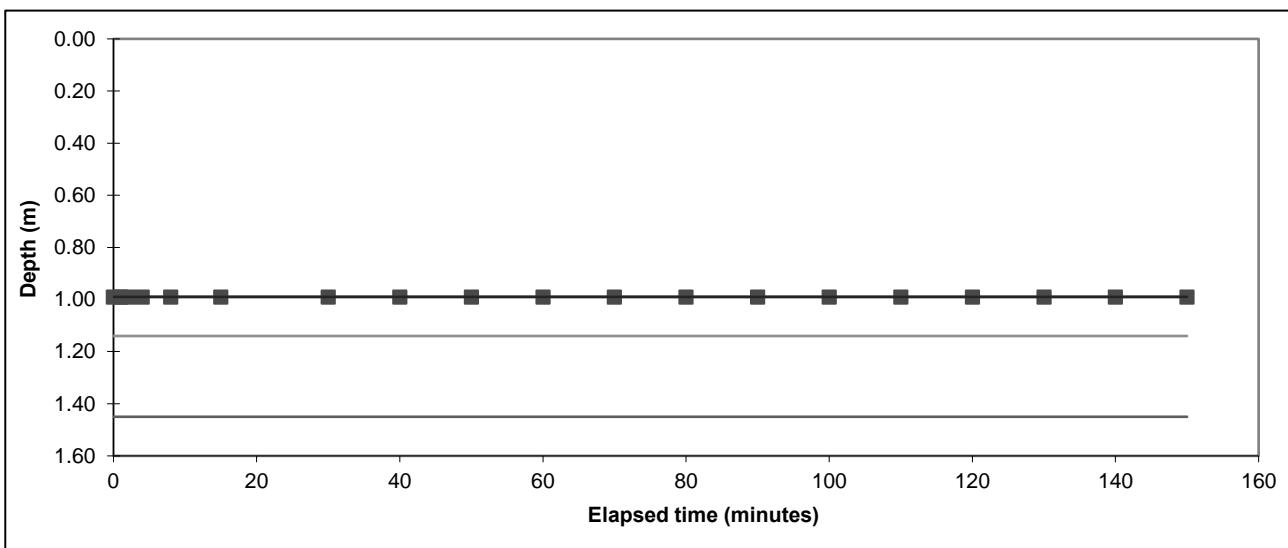
Rogers Geotechnical Services L

Soakaway Test

Trial Pit No:	SA02	Test No:	1	Date:	08.04.2025
Length (m):	1.600	Datum Height:		0.00 m agl	
Width (m):	0.30	Granular infill:	None		
Depth (m):	1.60	Porosity of infill:	1	(assumed)	
Elapsed time (minutes)	Water Depth (m below datum)	Elapsed time (minutes)	Water Depth (m below datum)		
0	0.910	110	0.910		
1	0.910	120	0.910		
2	0.910	130	0.910		
4	0.910	140	0.910		
8	0.910	150	0.910		
15	0.910				
30	0.910				
40	0.910				
50	0.910				
60	0.910				
70	0.910				
80	0.910				
90	0.910				
100	0.910				

Start water depth for analysis (mbgl):	0.91	Elapsed time (mins):	#N/A
75% effective depth (mbgl):	1.08		
50% effective depth (mbgl):	1.26	Elapsed time (mins):	#N/A
25% effective depth (mbgl):	1.43	Elapsed time (mins):	#N/A
Base of soakage zone (mbgl):	1.60		
Volume outflow between 75% and 25% effective depth (m ³):			
Mean surface area of outflow (m ²):		1.77	
(side area at 50% effective depth + base area)			
Time for outflow between 75% and 25% effective depth (mins):			

Soil infiltration rate (m/s):	Test incomplete as 25% effective depth not achieved. Unable to reliably determine soil infiltration rate.
-------------------------------	---


Remarks	Results processed following BRE 365 (2007). Soil appears to be practically impermeable.
---------	--

Client:	Elements Green Trent Ltd	Job No:
Site:	Land off Caunton Road, Kersall, Newark, Nottinghamshire, NG23 6BA	C4946/25/E/7542

Rogers Geotechnical Services L

Soakaway Test

Trial Pit No:	SA03	Test No:	1	Date:	08.04.2025
Length (m):	1.700	Datum Height:		0.00 m agl	
Width (m):	0.30	Granular infill:	None		
Depth (m):	1.60	Porosity of infill:	1	(assumed)	
Elapsed time (minutes)	Water Depth (m below datum)	Elapsed time (minutes)	Water Depth (m below datum)		
0	0.990	110	0.990		
1	0.990	120	0.990		
2	0.990	130	0.990		
4	0.990	140	0.990		
8	0.990	150	0.990		
15	0.990				
30	0.990				
40	0.990				
50	0.990				
60	0.990				
70	0.990				
80	0.990				
90	0.990				
100	0.990				

Start water depth for analysis (mbgl):	0.99	Elapsed time (mins):	#N/A
75% effective depth (mbgl):	1.14		
50% effective depth (mbgl):	1.30		
25% effective depth (mbgl):	1.45	Elapsed time (mins):	#N/A
Base of soakage zone (mbgl):	1.60		
Volume outflow between 75% and 25% effective depth (m ³):			
Mean surface area of outflow (m ²):		1.71	
(side area at 50% effective depth + base area)			
Time for outflow between 75% and 25% effective depth (mins):			

Soil infiltration rate (m/s):	Test incomplete as 25% effective depth not achieved. Unable to reliably determine soil infiltration rate.
-------------------------------	---

Remarks	Results processed following BRE 365 (2007). Soil appears to be practically impermeable.
---------	--

Client:	Elements Green Trent Ltd	Job No:
Site:	Land off Caunton Road, Kersall, Newark, Nottinghamshire, NG23 6BA	C4946/25/E/7542

APPENDIX B: INFILTRATION TESTING - Soakaway Testing 2: Land Adjacent Ossington Lane

Environmental
Geotechnical
Specialists

SOAKAWAY LETTER REPORT

job number

date

site address

written by

checked by

issued by

Please consider the environment before printing this report.

Environmental
Geotechnical
Specialists

Rogers Geotechnical Services Ltd
Offices 1 & 2 Barncliffe Business Park, Near Bank, Shelley, Huddersfield, HD8 8LU
01484 604354 Company No. 5130864

<ENVIRONMENTAL><GEOTECHNICAL>

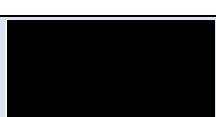
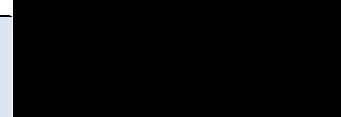
Contents

	Page
1. Introduction	2
2. Limitations	2
3. Fieldworks	2
4. Geology	3
5. Strata Conditions	3
6. Insitu Testing	3
6.1 Soakaway Test	3
7. Discussion	4
8. References	4

Appendices

1. Site Plan
2. Trial Pit Records
3. Trial Pit Photographs
4. Soakaway Results

Please consider the environment
before printing this report.



Report on Soakaway Testing

Location: **Land Adjacent Ossington Lane**
Ossington Lane, Newark, Nottinghamshire, NG23 6NY

For: Elements Green Trent Ltd

Report No. C4947/25/E/7544 Report Date: May 2025

For and on behalf of **Rogers Geotechnical Services Ltd**

Steven Hale BSc FGS Geo-environmental Technician		Rob Palmer MSc FGS ACIEH Engineering Director	

Report Summary¹

Item	Comments	Section
Geology	Superficial Geology – none. Solid Geology – Mercia Mudstone Group.	4.
Strata Conditions	Nominal thickness of topsoil overlaying clay representative of the weathered Mercia Mudstone	5.
Groundwater	No water strikes noted during investigation.	5.
Suitability of Soakaways	Not recommended.	7.

¹ This summary should not be relied upon to provide a comprehensive review. All of the information contained in this document should be considered.

1. Introduction

- i. We thank you for your request to undertake percolation testing at the above-mentioned site and take pleasure in enclosing the results of this work. The investigation was undertaken on the 28th April 2025 in accordance with your instruction to proceed. The site is centred on grid reference 477350, 364723. This report describes the work undertaken, presents the data obtained and discusses the results of the tests.

2. Limitations

- ii. The recommendations made and opinions expressed in this report are based on the ground conditions revealed by the site works, together with an assessment of the site. Whilst opinions may be expressed relating to sub-soil conditions in parts of the site not investigated, for example between trial pit positions, these are for guidance only and no liability can be accepted for their accuracy.
- iii. This report has been prepared in accordance with our understanding of current best practice. However, new information or legislation, or changes to best practice may necessitate revision of the report after the date of issue.

3. Fieldworks

- iv. Three trial pits were excavated in order to undertake soakaway testing, the positions of which are shown in Appendix 1. The soakaway tests were undertaken at the base of the pit at depths rational to the construction of soakaways. The soils exposed in the trial pits were logged on site in general accordance with BS5930: 2015 +A1: 2020, and full descriptions are given on the trial pit records which are presented in Appendix 2. Photographs of the trial pits are included within Appendix 3.
- v. Once excavations were completed, the trial pits were carefully re-instated with the risings. Whilst every care was taken during the infilling process, including compacting of the infill at regular intervals with the arm of the excavator, it should be appreciated that some mounding of the surface may have resulted. Moreover, the infilled soils may be subjected to settlement over time, such that a depression in the surface may also occur. Therefore, the locations of any pits undertaken in this investigation should be conveyed to the current site user, as the mounds or depressions associated with the pits may present a risk to current site operations. Furthermore, it must be realised that the infilled pits represent an area of disturbance within the site soils, thus the soils at the pit locations may vary characteristically compared to the undisturbed ground.

4. Geology

vi. The available published geological data for the site has been examined and the following table presents the anticipated geology.

Table 1: Geological Data for the Site

Strata Type	Strata Name ²	Previous Name ³	Description ³
Superficial Geology	-	-	None indicated beneath the site.
Solid Geology	Mercia Mudstone Group	Red Marl	Dominantly red, less commonly green-grey, mudstones and subordinate siltstones with thick halite-bearing units in some basinal areas.

5. Strata Conditions

vii. In accordance with the geology of the area, the succession has been shown to include the following:

Table 2: Generalised Strata Profile

Depth m below ground level to underside of layer	Strata Type	Positions Layer Revealed	Groundwater Strikes m below ground level
0.25 – 0.30	TOPSOIL (Soft, dark brown, sandy, slightly gravelly, silty CLAY)	All	None
+1.60 – +1.65	Firm, reddish brown, slightly sandy, slightly gravelly, silty CLAY. [WEATHERED MERCIA MUDSTONE GROUP]	All	None

'+' denotes that the strata extended below the termination depth of the investigated positions, thus the extent of the deposit is only proven to the depths indicated.

6. Insitu Testing

6.1 Soakaway Test

viii. On reaching the elected soakaway test depth, the pit was trimmed and squared as much as practicable. Water was then introduced into the pit at a controlled rate to prevent collapse of the sides and the level monitored at time intervals relative to a reference bar at ground level. The results obtained from the soakaway tests are presented at Appendix 4 and are summarised below:

² Sources: British Geological Survey (NERC) Map Sheets 113; Ollerton; Solid and Drift Edition, and Onshore Geoindex [online resource from www.bgs.ac.uk]

³ Sources: British Geological Survey (NERC) Lexicon of Named Rock Units [online resource from www.bgs.ac.uk]

Table 3: Soakaway Test Results

Location	Soakage Area Dimensions (average) (m)	Depths of soaked strata (m)	Soil Description (of soaked strata)	Infiltration Rate (m/s)	*Drainage Characteristics
SA01	0.30 x 1.60	1.01 to 1.60	Side – Slightly sandy, slightly gravelly, silty CLAY Base – As above	-	Practically impermeable
SA02	0.30 x 1.55	0.92 to 1.60	Side – Slightly sandy, slightly gravelly, silty CLAY Base – As above	-	Practically impermeable
SA03	0.30 x 1.55	0.99 to 1.65	Side – Slightly sandy, slightly gravelly, silty CLAY Base – As above	-	Practically impermeable

ix. During the soakaway tests the water level did not achieve a fall from 75% to 25% of the effective depth of the storage volume in all three trial pits. In all tests, the water level did not move, as such, the tests could not be completed within the scope of the method provided in BRE Digest 365 due to the poor soakage rate of the exposed soils. Due to the negligible water movement it was not possible to extrapolate the results obtained in order to obtain a soil infiltration rate.

7. Discussion

x. The soils encountered beneath the topsoil were found to be typical of the weathered fraction of the underlying Mercia Mudstone Group. The strata conditions and subsequent drainage characteristics appear to be comparable across the site. In this instance, the infiltration testing has revealed that the soils have practically impermeable drainage characteristics. Therefore, soakaways cannot be recommended at this site and an alternative form of drainage should be adopted.

8. References

- Building Research Establishment (BRE) Digest 365, *Soakaway Design*, September 1991.
- British Standards Institution (2015 +A1: 2020) BS 5930: *Code of practice for ground investigations*, B.S.I., London.
- Barnes, G. (2000). *Soil Mechanics Principle and Practice*. 2nd ed. London: Macmillan Press Ltd, p.47.

Appendix 1

Site Plan

Notes:

Environmental
Geotechnical
Specialists

Rogers **Geotechnical** Services Ltd

Offices 1 & 2, Barncliffe
Business Park,
Near Bank,
Shelley,
Huddersfield,
HD8 8LU

Telephone: 0843 50 66 87
www.rogersgeotech.co.uk

Client:

Elements Green Trust Ltd

Job Number:

C4946/25/E/7542

Project Details:

Land off Caunton Road, Newark,
Nottinghamshire, NG23 6BA

Scale: Not to scale - reference only

Appendix 2

Trial Pit Records

Environmental Geotechnical Specialists

Trial Pit Log

Trialpit No

SA01

Sheet 1 of 1

Trial Pit Log

Trialpit No

SA02

Sheet 1 of 1

Project Name:	Land off Caunton Road	Project No.	Co-ords:	-	Date
		C4946/25/E/7542	Level:		08/04/2025

Location:	Newark, Nottinghamshire, NG23 6BA	Dimensions (m):	1.6	Scale 1:25
Client:	Elements Green Trent Ltd	Depth	0.3	Logged SH

Water Strike	Samples and In Situ Testing			Depth (m)	Level (m)	Legend	Stratum Description
	Depth	Type	Results				
				0.35			TOPSOIL (Soft, brown, slightly sandy, slightly gravelly, clayey SILT. Sand is fine to medium. Gravel is sub-angular to rounded and fine to coarse of various lithologies).
							Firm, reddish brown, slightly gravelly, silty CLAY. Gravel is tabular, sub-angular and fine to coarse of mudstone and siltstone. [WEATHERED MERCIA MUDSTONE GROUP]
				1.60			End of pit at 1.60 m
							1
							2
							3
							4
							5

Remarks:	1. Position scanned for services using CAT and Genny.	
Stability:	Stable	

Environmental
Geotechnical
Specialists

Trial Pit Log

Trialpit No

SA03

Sheet 1 of 1

Project Name:	Land off Caunton Road	Project No.	Co-ords:	-	Date
		C4946/25/E/7542	Level:		08/04/2025

Location:	Newark, Nottinghamshire, NG23 6BA	Dimensions (m):	1.7	Scale
		Depth	0.3	1:25

Client:	Elements Green Trent Ltd	1.60		Logged SH
---------	--------------------------	------	--	-----------

Water Strike	Samples and In Situ Testing			Depth (m)	Level (m)	Legend	Stratum Description	
	Depth	Type	Results					
				0.35			TOPSOIL (Soft, brown, slightly sandy, slightly gravelly, clayey SILT. Sand is fine to medium. Gravel is sub-angular to rounded and fine to coarse of various lithologies).	
							Firm, reddish brown, slightly gravelly, silty CLAY. Gravel is tabular, sub-angular and fine to coarse of mudstone and siltstone. [WEATHERED MERCIA MUDSTONE GROUP]	
				1.60				End of pit at 1.60 m
								1
								2
								3
								4
								5

Remarks:	1. Position scanned for services using CAT and Genny.	
Stability:	Stable	

Appendix 3

Trial Pit Photographs

Photo 1: SA01

Photo 2: SA01 backfilled

Environmental
Geotechnical
Specialists

Site Name:
Land off Caunton Road

Job No:
C4946/25/E/7542

t. 0843 50 666 87
www.rogersgeotech.co.uk

Photo 1: SA02

Photo 2: SA02 backfilled

Environmental
Geotechnical
Specialists

Site Name:
Land off Caunton Road

Job No:
C4946/25/E/7542

t. 0843 50 666 87
www.rogersgeotech.co.uk

Photo 1: SA03

Photo 2: SA03 backfilled

Environmental
Geotechnical
Specialists

Site Name:

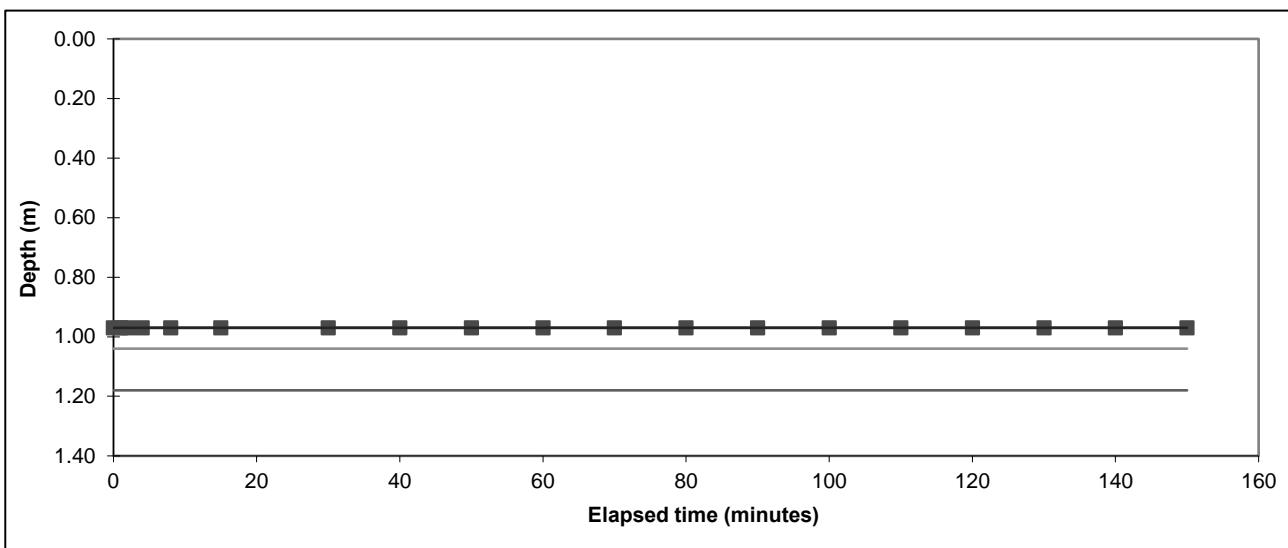
Land off Caunton Road

Job No:

C4946/25/E/7542

t. 0843 50 666 87
www.rogersgeotech.co.uk

Appendix 4


Soakaway Results

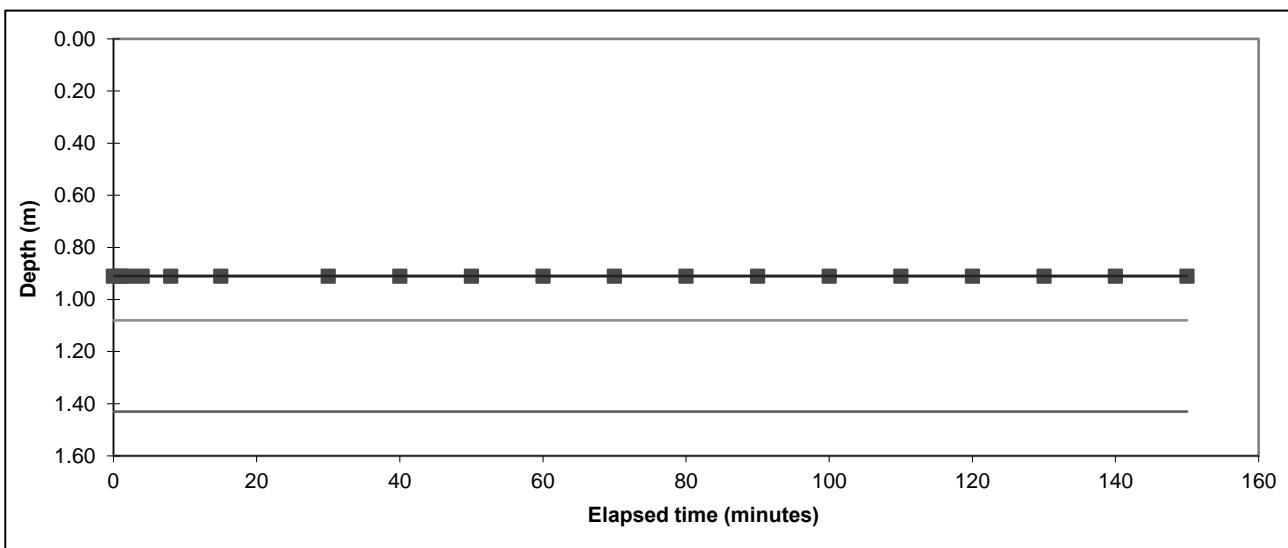
Rogers Geotechnical Services L

Soakaway Test

Trial Pit No:	SA01	Test No:	1	Date:	08.04.2025
Length (m):	1.600	Datum Height:		0.00 m agl	
Width (m):	0.30	Granular infill:	None		
Depth (m):	1.25	Porosity of infill:	1	(assumed)	
Elapsed time (minutes)	Water Depth (m below datum)	Elapsed time (minutes)	Water Depth (m below datum)		
0	0.970	110	0.970		
1	0.970	120	0.970		
2	0.970	130	0.970		
4	0.970	140	0.970		
8	0.970	150	0.970		
15	0.970				
30	0.970				
40	0.970				
50	0.970				
60	0.970				
70	0.970				
80	0.970				
90	0.970				
100	0.970				

Start water depth for analysis (mbgl):	0.97	Elapsed time (mins):	#N/A
75% effective depth (mbgl):	1.04	Elapsed time (mins):	#N/A
50% effective depth (mbgl):	1.11	Elapsed time (mins):	#N/A
25% effective depth (mbgl):	1.18	Elapsed time (mins):	#N/A
Base of soakage zone (mbgl):	1.25		
Volume outflow between 75% and 25% effective depth (m ³):			
Mean surface area of outflow (m ²):		1.01	
(side area at 50% effective depth + base area)			
Time for outflow between 75% and 25% effective depth (mins):			

Soil infiltration rate (m/s):	Test incomplete as 25% effective depth not achieved. Unable to reliably determine soil infiltration rate.
-------------------------------	---


Remarks	Results processed following BRE 365 (2007). Soil appears to be practically impermeable.
---------	--

Client:	Elements Green Trent Ltd	Job No:
Site:	Land off Caunton Road, Kersall, Newark, Nottinghamshire, NG23 6BA	C4946/25/E/7542

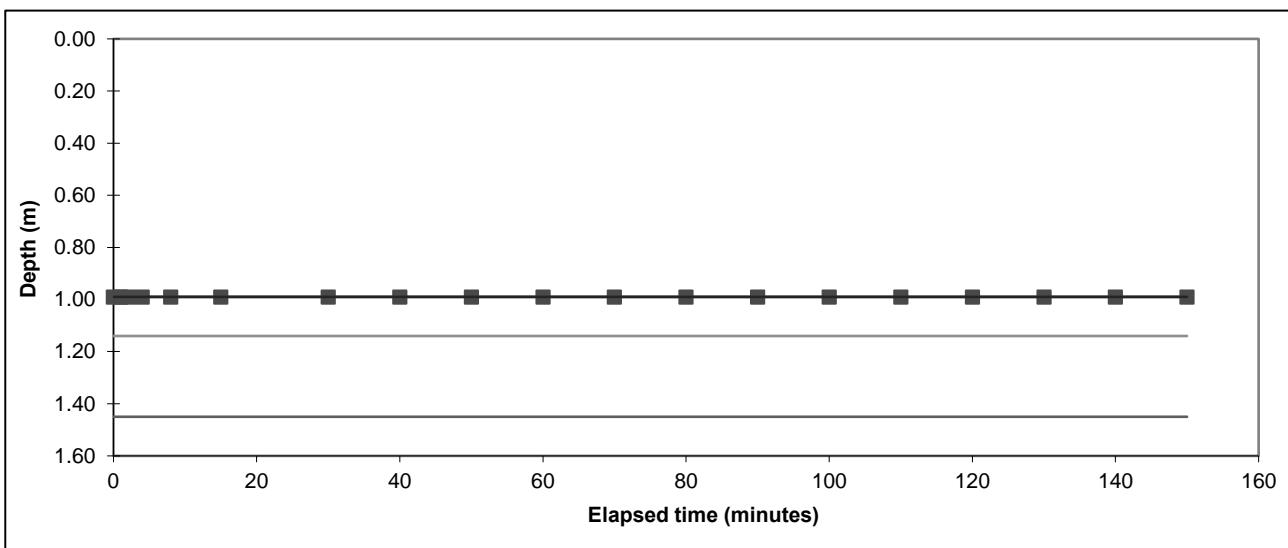
Rogers Geotechnical Services L

Soakaway Test

Trial Pit No:	SA02	Test No:	1	Date:	08.04.2025
Length (m):	1.600	Datum Height:		0.00 m agl	
Width (m):	0.30	Granular infill:	None		
Depth (m):	1.60	Porosity of infill:	1	(assumed)	
Elapsed time (minutes)	Water Depth (m below datum)	Elapsed time (minutes)	Water Depth (m below datum)		
0	0.910	110	0.910		
1	0.910	120	0.910		
2	0.910	130	0.910		
4	0.910	140	0.910		
8	0.910	150	0.910		
15	0.910				
30	0.910				
40	0.910				
50	0.910				
60	0.910				
70	0.910				
80	0.910				
90	0.910				
100	0.910				

Start water depth for analysis (mbgl):	0.91	Elapsed time (mins):	#N/A
75% effective depth (mbgl):	1.08	Elapsed time (mins):	#N/A
50% effective depth (mbgl):	1.26	Elapsed time (mins):	#N/A
25% effective depth (mbgl):	1.43	Elapsed time (mins):	#N/A
Base of soakage zone (mbgl):	1.60		
Volume outflow between 75% and 25% effective depth (m ³):			
Mean surface area of outflow (m ²):		1.77	
(side area at 50% effective depth + base area)			
Time for outflow between 75% and 25% effective depth (mins):			

Soil infiltration rate (m/s):	Test incomplete as 25% effective depth not achieved. Unable to reliably determine soil infiltration rate.
-------------------------------	---


Remarks	Results processed following BRE 365 (2007). Soil appears to be practically impermeable.
---------	--

Client:	Elements Green Trent Ltd	Job No:
Site:	Land off Caunton Road, Kersall, Newark, Nottinghamshire, NG23 6BA	C4946/25/E/7542

Rogers Geotechnical Services L

Soakaway Test

Trial Pit No:	SA03	Test No:	1	Date:	08.04.2025
Length (m):	1.700	Datum Height:		0.00 m agl	
Width (m):	0.30	Granular infill:	None		
Depth (m):	1.60	Porosity of infill:	1	(assumed)	
Elapsed time (minutes)	Water Depth (m below datum)	Elapsed time (minutes)	Water Depth (m below datum)		
0	0.990	110	0.990		
1	0.990	120	0.990		
2	0.990	130	0.990		
4	0.990	140	0.990		
8	0.990	150	0.990		
15	0.990				
30	0.990				
40	0.990				
50	0.990				
60	0.990				
70	0.990				
80	0.990				
90	0.990				
100	0.990				

Start water depth for analysis (mbgl):	0.99	Elapsed time (mins):	#N/A
75% effective depth (mbgl):	1.14		
50% effective depth (mbgl):	1.30		
25% effective depth (mbgl):	1.45	Elapsed time (mins):	#N/A
Base of soakage zone (mbgl):	1.60		
Volume outflow between 75% and 25% effective depth (m ³):			
Mean surface area of outflow (m ²):		1.71	
(side area at 50% effective depth + base area)			
Time for outflow between 75% and 25% effective depth (mins):			

Soil infiltration rate (m/s):	Test incomplete as 25% effective depth not achieved. Unable to reliably determine soil infiltration rate.
-------------------------------	---

Remarks	Results processed following BRE 365 (2007). Soil appears to be practically impermeable.
---------	--

Client:	Elements Green Trent Ltd	Job No:
Site:	Land off Caunton Road, Kersall, Newark, Nottinghamshire, NG23 6BA	C4946/25/E/7542

APPENDIX B: INFILTRATION TESTING - Soakaway Testing 3: Land at Maplebeck Road

Environmental
Geotechnical
Specialists

SOAKAWAY LETTER REPORT

job number

date

site address

written by

checked by

issued by

Please consider the environment before printing this report.

Environmental
Geotechnical
Specialists

Rogers Geotechnical Services Ltd
Offices 1 & 2 Barncliffe Business Park, Near Bank, Shelley, Huddersfield, HD8 8LU
01484 604354 Company No. 5130864

<ENVIRONMENTAL><GEOTECHNICAL>

Contents

	Page
1. Introduction	2
2. Limitations	2
3. Fieldworks	2
4. Geology	3
5. Strata Conditions	3
6. Insitu Testing	3
6.1 Soakaway Test	3
7. Discussion	4
8. References	4

Appendices

1. Site Plan
2. Trial Pit Records
3. Trial Pit Photographs
4. Soakaway Results

Please consider the environment
before printing this report.

Report on Soakaway Testing

Location: **Land at Maplebeck Road**
Maplebeck, Newark, Nottinghamshire, NG22 0BS

For: Elements Green Trent Ltd

Report No. C4948/25/E/7546 Report Date: May 2025

For and on behalf of **Rogers Geotechnical Services Ltd**

Steven Hale BSc FGS Geo-environmental Technician		Rob Palmer MSc FGS ACIEH Engineering Director	

Report Summary¹

Item	Comments	Section
Geology	Solid Geology – Mercia Mudstone Group.	4.
Strata Conditions	Significant thickness of cohesive and granular made ground overlying silty clay (weathered fraction of the underlying rock).	5.
Groundwater	No water strikes noted during investigation.	5.
Suitability of Soakaways	Not recommended.	7.

¹ This summary should not be relied upon to provide a comprehensive review. All of the information contained in this document should be considered.

1. Introduction

- i. We thank you for your request to undertake percolation testing at the above-mentioned site and take pleasure in enclosing the results of this work. The investigation was undertaken on the 26th March 2025 in accordance with your instruction to proceed. The site is centred on grid reference 471807, 359946. This report describes the work undertaken, presents the data obtained and discusses the results of the tests.

2. Limitations

- ii. The recommendations made and opinions expressed in this report are based on the ground conditions revealed by the site works, together with an assessment of the site. Whilst opinions may be expressed relating to sub-soil conditions in parts of the site not investigated, for example between trial pit positions, these are for guidance only and no liability can be accepted for their accuracy.
- iii. This report has been prepared in accordance with our understanding of current best practice. However, new information or legislation, or changes to best practice may necessitate revision of the report after the date of issue.

3. Fieldworks

- iv. Three trial pits were excavated in order to undertake soakaway testing, the positions of which are shown in Appendix 1. The soakaway tests were undertaken at the base of the pit at depths rational to the construction of soakaways. The soils exposed in the trial pits were logged on site in general accordance with BS5930: 2015 +A1: 2020, and full descriptions are given on the trial pit records which are presented in Appendix 2. Photographs of the trial pits are included within Appendix 3.
- v. Once excavations were completed, the trial pits were carefully re-instated with the risings. Whilst every care was taken during the infilling process, including compacting of the infill at regular intervals with the arm of the excavator, it should be appreciated that some mounding of the surface may have resulted. Moreover, the infilled soils may be subjected to settlement over time, such that a depression in the surface may also occur. Therefore, the locations of any pits undertaken in this investigation should be conveyed to the current site user, as the mounds or depressions associated with the pits may present a risk to current site operations. Furthermore, it must be realised that the infilled pits represent an area of disturbance within the site soils, thus the soils at the pit locations may vary characteristically compared to the undisturbed ground.

4. Geology

vi. The available published geological data for the site has been examined and the following table presents the anticipated geology.

Table 1: Geological Data for the Site

Strata Type	Strata Name ²	Previous Name ³	Description ³
Superficial Geology	-	-	None indicated beneath the site.
Solid Geology	Mercia Mudstone Group	Red Marl	Dominantly red, less commonly green-grey, mudstones and subordinate siltstones with thick halite-bearing units in some basinal areas.

5. Strata Conditions

vii. In accordance with the geology of the area, the succession has been shown to include the following:

Table 2: Generalised Strata Profile

Depth m below ground level to underside of layer	Strata Type	Positions Layer Revealed	Groundwater Strikes m below ground level
0.25 – 0.30	TOPSOIL (Soft, dark brown, slightly sandy, slightly gravelly, silty CLAY)	All	None
+1.50	Firm, reddish brown mottled greenish, slightly gravelly, silty CLAY [WEATHERED MERCIA MUDSTONE GROUP]	SA01	None
0.70	Firm, greenish grey mottled reddish brown, gravelly, silty CLAY [WEATHERED MERCIA MUDSTONE GROUP]	SA02	None
+1.30 – +1.40	Firm to stiff, reddish brown, slightly gravelly, silty CLAY [WEATHERED MERCIA MUDSTONE GROUP]	SA02 & SA03	None

'+' denotes that the strata extended below the termination depth of the investigated positions, thus the extent of the deposit is only proven to the depths indicated.

6. Insitu Testing

6.1 Soakaway Test

viii. On reaching the elected soakaway test depth, the pit was trimmed and squared as much as practicable. Water was then introduced into the pit at a controlled rate to prevent collapse of the sides and the level monitored at time intervals relative to a

² Sources: British Geological Survey (NERC) Map Sheets 113; Ollerton; Solid and Drift Edition, and Onshore Geoindex [online resource from www.bgs.ac.uk]

³ Sources: British Geological Survey (NERC) Lexicon of Named Rock Units [online resource from www.bgs.ac.uk]

reference bar at ground level. The results obtained from the soakaway tests are presented at Appendix 4 and are summarised below:

Table 3: Soakaway Test Results

Location	Soakage Area Dimensions (average) (m)	Depths of soaked strata (m)	Soil Description (of soaked strata)	Infiltration Rate (m/sec)	*Drainage Characteristics
SA01	0.30 x 1.30	0.94 to 1.50	Side – Slightly gravelly, silty CLAY Base – As above	-	Practically impermeable
SA02	0.30 x 1.00	0.86 to 1.30	Side – Slightly gravelly, silty CLAY Base – As above	-	Practically impermeable
SA03	0.30 x 1.20	0.94 to 1.40	Side – Slightly gravelly, silty CLAY Base – As above	-	Practically impermeable

*Based on the most onerous results for each test.

ix. During the soakaway tests the water level did not achieve a fall from 75% to 25% of the effective depth of the storage volume in all three trial pits. In all tests, the water level either did not move or moved at a negligible rate. It is considered that the initial movement was observed as water filled any gaps and fissures within the ground at the sides of the pits. On this basis, the tests could not be completed within the scope of the method provided in BRE Digest 365 due to the poor soakage rate of the exposed soils. Due to the negligible water movement it was not possible to extrapolate the results obtained in order to obtain a soil infiltration rate.

7. Discussion

x. The soils encountered beneath the topsoil were found to be typical of the weathered fraction of the underlying Mercia Mudstone Group. The strata conditions and subsequent drainage characteristics appear to be comparable across the site. In this instance, the infiltration testing has revealed that the soils have practically impermeable drainage characteristics. Therefore, soakaways cannot be recommended at this site and an alternative form of drainage should be adopted.

8. References

- Building Research Establishment (BRE) Digest 365, *Soakaway Design*, September 1991.
- British Standards Institution (2015 +A1: 2020) BS 5930: *Code of practice for ground investigations*, B.S.I., London.
- Barnes, G. (2000). *Soil Mechanics Principle and Practice*. 2nd ed. London: Macmillan Press Ltd, p.47.

Appendix 1

Site Plan

Notes:

Environmental
Geotechnical
Specialists

Rogers **Geotechnical** Services Ltd

Offices 1 & 2, Barncliffe
Business Park,
Near Bank,
Shelley,
Huddersfield,
HD8 8LU

Telephone: 0843 50 66 87
www.rogersgeotech.co.uk

Client:

Elements Green Trent Ltd

Job Number:

C4948/25/E/7545

Project Details:

Land at Maplebeck Road, Newark

Scale: Not to scale - reference only

Appendix 2

Trial Pit Records

Environmental
Geotechnical
Specialists

Trial Pit Log

Trialpit No

SA01

Sheet 1 of 1

Project Name: Land at Maplebeck Road			Project No. C4948/25/E/7545			Co-ords: -	Level:	Date 26/03/2025
Location: Maplebeck Road, Maplebeck, Nottinghamshire, NG22 0BS			Dimensions (m):			1.3	Scale 1:25	
Client: Elements Green Trent Ltd			Depth	1.50	0.3		Logged SH	
Water Strike	Samples and In Situ Testing			Depth (m)	Level (m)	Legend	Stratum Description	
	Depth	Type	Results				1	
				0.25			TOPSOIL (Soft, dark brown, slightly sandy, slightly gravelly, silty CLAY. Sand is fine to medium. Gravel is sub-angular to sub-rounded and fine to coarse mudstone and siltstone). Firm, reddish brown mottled greenish grey, slightly gravelly, silty CLAY. Gravel is sub-angular and fine to medium mudstone. [WEATHERED MERCIA MUDSTONE GROUP]	
				1.50			End of pit at 1.50 m	2
								3
								4
								5
Remarks:	1. Position cleared of services using CAT and Genny.							
Stability:	Stable							

Environmental Geotechnical Specialists

Trial Pit Log

Trialpit No

SA02

Sheet 1 of 1

Trial Pit Log

Trialpit No

SA03

Sheet 1 of 1

Project Name: Land at Maplebeck Road			Project No. C4948/25/E/7545		Co-ords: - Level:		Date 26/03/2025
Location: Maplebeck Road, Maplebeck, Nottinghamshire, NG22 0BS			Dimensions (m):		1.2		Scale 1:25
Client: Elements Green Trent Ltd			Depth 1.40		0.3		Logged SH
Water Strike	Samples and In Situ Testing			Depth (m)	Level (m)	Legend	Stratum Description
	Depth	Type	Results				
			0.30				TOPSOIL (Soft, dark brown, slightly sandy, slightly gravelly, silty CLAY. Sand is fine to medium. Gravel is sub-angular to sub-rounded and fine to coarse mudstone and siltstone). Stiff, reddish brown, slightly gravelly, silty CLAY. Gravel is sub-angular and fine to medium of mudstone. [WEATHERED MERCIA MUDSTONE GROUP]
			1.40				End of pit at 1.40 m
							1
							2
							3
							4
							5
Remarks: 1. Position cleared of services using CAT and Genny.							
Stability: Stable							

Appendix 3

Trial Pit Photographs

Photo 1: SA01

Photo 2: SA01 backfilled

Environmental
Geotechnical
Specialists

Site Name:
Land at Maplebeck Road

Job No:
C4948/25/E/7545

t. 0843 50 666 87
www.rogersgeotech.co.uk

Photo 3: SA02

Photo 4: SA02 backfilled

Environmental
Geotechnical
Specialists

Site Name:
Land at Maplebeck Road

Job No:
C4948/25/E/7545

t. 0843 50 666 87
www.rogersgeotech.co.uk

Photo 5: SA03

Photo 6: SA03 backfilled

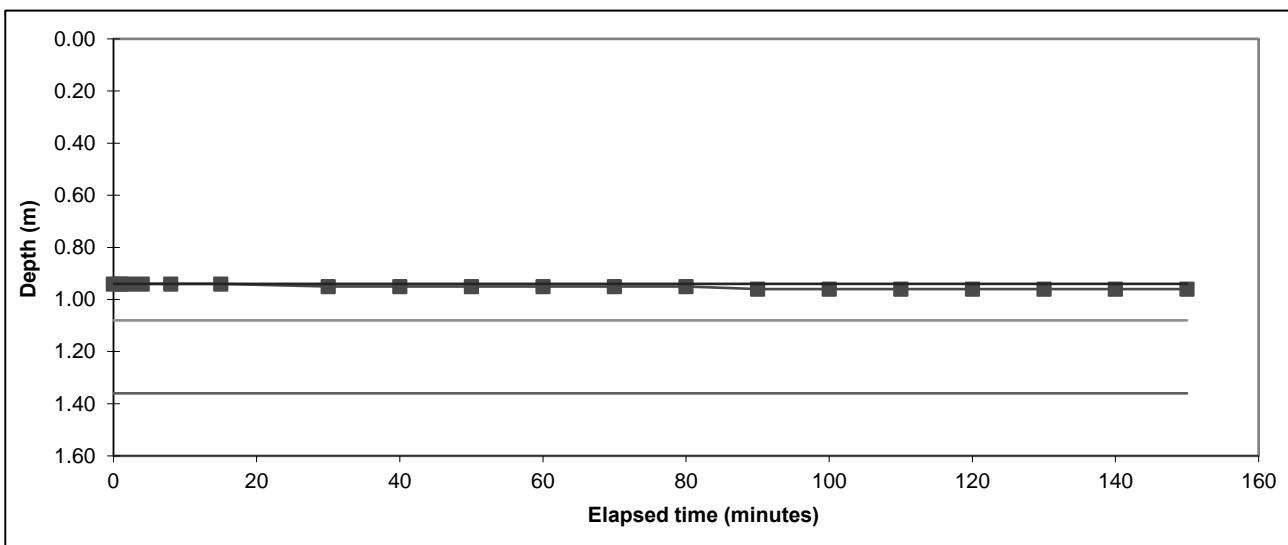
Environmental
Geotechnical
Specialists

Site Name:
Land at Maplebeck Road

Job No:
C4948/25/E/7545

t. 0843 50 666 87
www.rogersgeotech.co.uk

Appendix 4


Soakaway Results

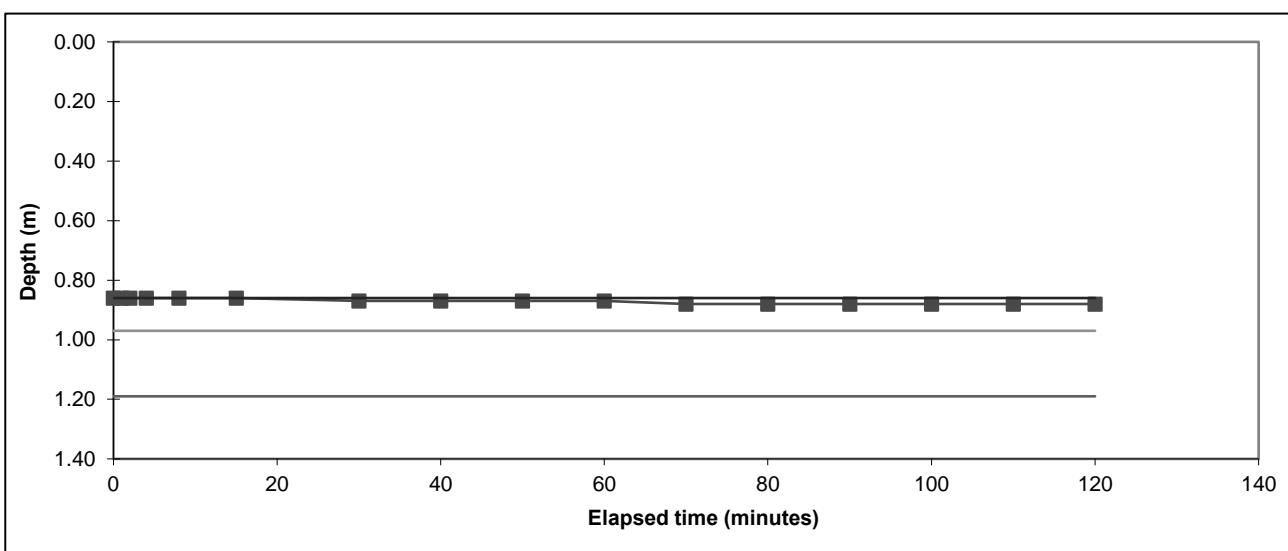
Rogers Geotechnical Services L

Soakaway Test

Trial Pit No:	SA01	Test No:	1	Date:	26.03.2025
Length (m):	1.300	Datum Height:		0.00 m agl	
Width (m):	0.30	Granular infill:	None		
Depth (m):	1.50	Porosity of infill:	1	(assumed)	
Elapsed time (minutes)	Water Depth (m below datum)	Elapsed time (minutes)	Water Depth (m below datum)		
0	0.940	110	0.960		
1	0.940	120	0.960		
2	0.940	130	0.960		
4	0.940	140	0.960		
8	0.940	150	0.960		
15	0.940				
30	0.950				
40	0.950				
50	0.950				
60	0.950				
70	0.950				
80	0.950				
90	0.960				
100	0.960				

Start water depth for analysis (mbgl):	0.94	Elapsed time (mins):	#N/A
75% effective depth (mbgl):	1.08		
50% effective depth (mbgl):	1.22		
25% effective depth (mbgl):	1.36	Elapsed time (mins):	#N/A
Base of soakage zone (mbgl):	1.50		
Volume outflow between 75% and 25% effective depth (m³):			
Mean surface area of outflow (m²):		1.29	
(side area at 50% effective depth + base area)			
Time for outflow between 75% and 25% effective depth (mins):			

Soil infiltration rate (m/s):	Test incomplete as 25% effective depth not achieved. Unable to reliably determine soil infiltration rate.
-------------------------------	---


Remarks	Results processed following BRE 365 (2007).
---------	---

Client:	Elements Green Trent Ltd	Job No:
Site:	Land at Maplebeck Road	C4948/25/E/7545

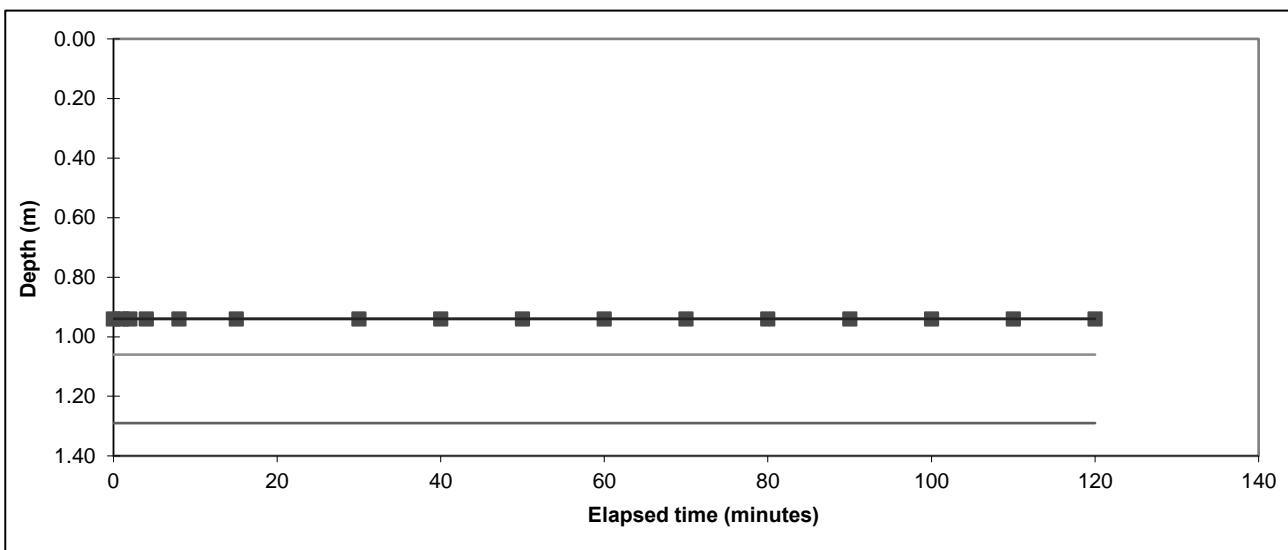
Rogers Geotechnical Services L

Soakaway Test

Trial Pit No:	SA02	Test No:	1	Date:	26.03.2025
Length (m):	1.000	Datum Height:		0.00 m agl	
Width (m):	0.30	Granular infill:	None		
Depth (m):	1.30	Porosity of infill:	1	(assumed)	
Elapsed time (minutes)	Water Depth (m below datum)	Elapsed time (minutes)	Water Depth (m below datum)		
0	0.860	110	0.880		
1	0.860	120	0.880		
2	0.860				
4	0.860				
8	0.860				
15	0.860				
30	0.870				
40	0.870				
50	0.870				
60	0.870				
70	0.880				
80	0.880				
90	0.880				
100	0.880				

Start water depth for analysis (mbgl):	0.86	Elapsed time (mins):	#N/A
75% effective depth (mbgl):	0.97		
50% effective depth (mbgl):	1.08		
25% effective depth (mbgl):	1.19	Elapsed time (mins):	#N/A
Base of soakage zone (mbgl):	1.30		
Volume outflow between 75% and 25% effective depth (m ³):			
Mean surface area of outflow (m ²):			0.87
(side area at 50% effective depth + base area)			
Time for outflow between 75% and 25% effective depth (mins):			

Soil infiltration rate (m/s):	Test incomplete as 25% effective depth not achieved. Unable to reliably determine soil infiltration rate.
-------------------------------	---


Remarks	Results processed following BRE 365 (2007).
---------	---

Client:	Elements Green Trent Ltd	Job No:
Site:	Land at Maplebeck Road	C4948/25/E/7545

Rogers Geotechnical Services Ltd

Soakaway Test

Trial Pit No:	SA01	Test No:	1	Date:	26.03.2025
Length (m):	1.200	Datum Height:		0.00 m agl	
Width (m):	0.30	Granular infill:	None		
Depth (m):	1.40	Porosity of infill:	1	(assumed)	
Elapsed time (minutes)	Water Depth (m below datum)	Elapsed time (minutes)	Water Depth (m below datum)		
0	0.940	110	0.940		
1	0.940	120	0.940		
2	0.940				
4	0.940				
8	0.940				
15	0.940				
30	0.940				
40	0.940				
50	0.940				
60	0.940				
70	0.940				
80	0.940				
90	0.940				
100	0.940				

Start water depth for analysis (mbgl):	0.94	Elapsed time (mins):	#N/A
75% effective depth (mbgl):	1.06	Elapsed time (mins):	#N/A
50% effective depth (mbgl):	1.17	Elapsed time (mins):	#N/A
25% effective depth (mbgl):	1.29	Elapsed time (mins):	#N/A
Base of soakage zone (mbgl):	1.40		
Volume outflow between 75% and 25% effective depth (m ³):			
Mean surface area of outflow (m ²):		1.05	
(side area at 50% effective depth + base area)			
Time for outflow between 75% and 25% effective depth (mins):			

Soil infiltration rate (m/s):	Test incomplete as 25% effective depth not achieved. Unable to reliably determine soil infiltration rate.
--------------------------------------	--

Remarks	Results processed following BRE 365 (2007).
----------------	---

Client:	Elements Green Trent Ltd	Job No:
Site:	Land at Maplebeck Road	C4948/25/E/7545

APPENDIX B: INFILTRATION TESTING - Soakaway Testing 4: Land off Mill Lane

Environmental
Geotechnical
Specialists

SOAKAWAY LETTER REPORT

job number

date

site address

written by

checked by

issued by

Please consider the environment before printing this report.

Environmental
Geotechnical
Specialists

Rogers Geotechnical Services Ltd
Offices 1 & 2 Barncliffe Business Park, Near Bank, Shelley, Huddersfield, HD8 8LU
01484 604354 Company No. 5130864

<ENVIRONMENTAL><GEOTECHNICAL>

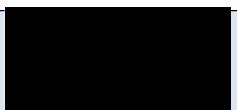
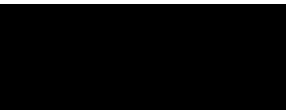
Contents

	Page
1. Introduction	2
2. Limitations	2
3. Fieldworks	2
4. Geology	3
5. Strata Conditions	3
6. Insitu Testing	3
6.1 Soakaway Test	3
7. Discussion	4
8. References	4

Appendices

1. Site Plan
2. Trial Pit Records
3. Trial Pit Photographs
4. Soakaway Results

Please consider the environment
before printing this report.



Report on Soakaway Testing

Location: Land off Mill Lane
Kersall, Newark, Nottinghamshire, NG22 0BH

For: Elements Green Trent Ltd

Report No. C4949/25/E/7546 Report Date: May 2025

For and on behalf of **Rogers Geotechnical Services Ltd**

Steven Hale BSc FGS Geo-environmental Technician	Scott Alexander BSc FGS Senior Geo-environmental Engineer

Report Summary¹

Item	Comments	Section
Geology	Superficial Geology – none. Solid Geology – Mercia Mudstone Group.	4.
Strata Conditions	Nominal thickness of topsoil overlaying clay representative	5.
Groundwater	No water strikes noted during investigation.	5.
Suitability of Soakaways	Not recommended.	7.

¹ This summary should not be relied upon to provide a comprehensive review. All of the information contained in this document should be considered.

1. Introduction

- i. We thank you for your request to undertake percolation testing at the above-mentioned site and take pleasure in enclosing the results of this work. The investigation was undertaken on the 7th April 2025 in accordance with your instruction to proceed. The site is centred on grid reference 472200, 362150. This report describes the work undertaken, presents the data obtained and discusses the results of the tests

2. Limitations

- ii. The recommendations made and opinions expressed in this report are based on the ground conditions revealed by the site works, together with an assessment of the site. Whilst opinions may be expressed relating to sub-soil conditions in parts of the site not investigated, for example between trial pit positions, these are for guidance only and no liability can be accepted for their accuracy.
- iii. This report has been prepared in accordance with our understanding of current best practice. However, new information or legislation, or changes to best practice may necessitate revision of the report after the date of issue.

3. Fieldworks

- iv. Three trial pits were excavated in order to undertake soakaway testing, the positions of which are shown in Appendix 1. The soakaway tests were undertaken at the base of the pit at depths rational to the construction of soakaways. The soils exposed in the trial pits were logged on site in general accordance with BS5930: 2015 +A1: 2020, and full descriptions are given on the trial pit records which are presented in Appendix 2. Photographs of the trial pits are included within Appendix 3.
- v. Once excavations were completed, the trial pits were carefully re-instated with the risings. Whilst every care was taken during the infilling process, including compacting of the infill at regular intervals with the arm of the excavator, it should be appreciated that some mounding of the surface may have resulted. Moreover, the infilled soils may be subjected to settlement over time, such that a depression in the surface may also occur. Therefore, the locations of any pits undertaken in this investigation should be conveyed to the current site user, as the mounds or depressions associated with the pits may present a risk to current site operations. Furthermore, it must be realised that the infilled pits represent an area of disturbance within the site soils, thus the soils at the pit locations may vary characteristically compared to the undisturbed ground.

4. Geology

vi. The available published geological data for the site has been examined and the following table presents the anticipated geology.

Table 1: Geological Data for the Site

Strata Type	Strata Name ²	Previous Name ³	Description ³
Superficial Geology	-	-	None indicated beneath the site.
Solid Geology	Mercia Mudstone Group	Red Marl	Dominantly red, less commonly green-grey, mudstones and subordinate siltstones with thick halite-bearing units in some basinal areas.

5. Strata Conditions

vii. In accordance with the geology of the area, the succession has been shown to include the following:

Table 2: Generalised Strata Profile

Depth m below ground level to underside of layer	Strata Type	Positions Layer Revealed	Groundwater Strikes m below ground level
0.20	TOPSOIL (Soft, dark brown, slightly sandy, slightly gravelly, clayey SILT)	All	None
+1.45 – +1.50	Firm, reddish brown, slightly sandy, slightly gravelly becoming gravelly, silty CLAY [WEATHERED MERCIA MUDSTONE GROUP]	All	None

'+' denotes that the strata extended below the termination depth of the investigated positions, thus the extent of the deposit is only proven to the depths indicated.

6. Insitu Testing

6.1 Soakaway Test

viii. On reaching the elected soakaway test depth, the pit was trimmed and squared as much as practicable. Water was then introduced into the pit at a controlled rate to prevent collapse of the sides and the level monitored at time intervals relative to a reference bar at ground level. The results obtained from the soakaway tests are presented at Appendix 4 and are summarised below:

² Sources: British Geological Survey (NERC) Map Sheets 113; Ollerton; Solid and Drift Edition, and Onshore Geoindex [online resource from www.bgs.ac.uk]

³ Sources: British Geological Survey (NERC) Lexicon of Named Rock Units [online resource from www.bgs.ac.uk]

Table 3: Soakaway Test Results

Location	Soakage Area Dimensions (average) (m)	Depths of soaked strata (m)	Soil Description (of soaked strata)	Infiltration Rate (m/sec)	*Drainage Characteristics
SA01	0.30 x 1.70	0.93 to 1.45	Side – Slightly gravelly, silty CLAY Base – As above	-	Practically impermeable
SA02	0.30 x 1.50	0.95 to 1.50	Side – Slightly gravelly, silty CLAY Base – As above	-	Practically impermeable
SA03	0.30 x 1.70	1.05 to 1.50	Side – Slightly gravelly, silty CLAY Base – As above	-	Practically impermeable

*Based on the most onerous results for each test.

ix. During the soakaway tests the water level did not achieve a fall from 75% to 25% of the effective depth of the storage volume in all three trial pits. In all tests, the water level did not move, as such, the tests could not be completed within the scope of the method provided in BRE Digest 365 due to the poor soakage rate of the exposed soils. Due to the negligible water movement it was not possible to extrapolate the results obtained in order to obtain a soil infiltration rate.

7. Discussion

x. The soils encountered beneath the topsoil were found to be typical of the weathered fraction of the underlying Mercia Mudstone Group. The strata conditions and subsequent drainage characteristics appear to be comparable across the site. In this instance, the infiltration testing has revealed that the soils have practically impermeable drainage characteristics. Therefore, soakaways cannot be recommended at this site and an alternative form of drainage should be adopted.

8. References

- Building Research Establishment (BRE) Digest 365, *Soakaway Design*, September 1991.
- British Standards Institution (2015 +A1: 2020) BS 5930: *Code of practice for ground investigations*, B.S.I., London.
- Barnes, G. (2000). *Soil Mechanics Principle and Practice*. 2nd ed. London: Macmillan Press Ltd, p.47.

Appendix 1

Site Plan

Notes:

A616

SA01

SA02

SA03

Environmental
Geotechnical
Specialists

Rogers **Geotechnical** Services Ltd

Offices 1 & 2, Barncliffe
Business Park,
Near Bank,
Shelley,
Huddersfield,
HD8 8LU

Telephone: 0843 50 66 87
www.rogersgeotech.co.uk

Client:

Elements Green Trent Ltd

Job Number:

C4949/25/E/7546

Project Details:

Land off Mill Lane, Kersall, Newark,
Nottinghamshire, NG22 0BH

Scale: Not to scale - reference only

Appendix 2

Trial Pit Records

Trial Pit Log

Trialpit No

SA01

Sheet 1 of 1

Project Name: Land off Mill Lane			Project No. C4949/25/E/7546			Co-ords: - Level:		Date 07/04/2025
Location: Kersall, Newark, Nottinghamshire, NG22 0BH						Dimensions (m):	1.7	Scale 1:25
Client: Elements Green Trent Ltd						Depth 1.45	0.3	Logged SH
Water Strike	Samples and In Situ Testing			Depth (m)	Level (m)	Legend	Stratum Description	
	Depth	Type	Results					
			0.20			TOPSOIL (Soft, dark brown, slightly sandy, slightly gravelly, clayey SILT. Sand is fine to medium. Gravel is subangular to rounded and fine to coarse of various lithologies). Firm, reddish brown, slightly sandy, slightly gravelly becoming gravelly, silty CLAY. Sand is fine to medium. Gravel is tabular, sub-angular and fine to coarse of mudstone and siltstone. [WEATHERED MERCIA MUDSTONE GROUP]		1
			1.45			End of pit at 1.45 m		2
								3
								4
								5
Remarks: 1. Position scanned for services using CAT and Genny.								
Stability: Stable								

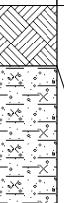
Trial Pit Log

Trialpit No

SA02

Sheet 1 of 1

Project Name: Land off Mill Lane			Project No. C4949/25/E/7546			Co-ords: - Level:		Date 07/04/2025
Location: Kersall, Newark, Nottinghamshire, NG22 0BH						Dimensions (m):	1.5	Scale 1:25
Client: Elements Green Trent Ltd						Depth 1.50	0.3	Logged SH
Water Strike	Samples and In Situ Testing			Depth (m)	Level (m)	Legend	Stratum Description	
	Depth	Type	Results					
			0.20			TOPSOIL (Soft, dark brown, slightly sandy, slightly gravelly, clayey SILT. Sand is fine to medium. Gravel is subangular to rounded and fine to coarse of various lithologies). Firm, reddish brown, slightly sandy, slightly gravelly becoming gravelly, silty CLAY. Sand is fine to medium. Gravel is tabular, sub-angular and fine to coarse of mudstone and siltstone. [WEATHERED MERCIA MUDSTONE GROUP]		1
			1.50			End of pit at 1.50 m		2
								3
								4
								5
Remarks: 1. Position scanned for services using CAT and Genny.								
Stability: Stable								



Trial Pit Log

Trialpit No

SA03

Sheet 1 of 1

Project Name: Land off Mill Lane			Project No. C4949/25/E/7546			Co-ords: - Level:		Date 07/04/2025
Location: Kersall, Newark, Nottinghamshire, NG22 0BH						Dimensions (m):	1.7	Scale 1:25
Client: Elements Green Trent Ltd						Depth 1.50	0.3	Logged SH
Water Strike	Samples and In Situ Testing			Depth (m)	Level (m)	Legend	Stratum Description	
	Depth	Type	Results					
			0.20			TOPSOIL (Soft, dark brown, slightly sandy, slightly gravelly, clayey SILT. Sand is fine to medium. Gravel is subangular to rounded and fine to coarse of various lithologies). Firm, reddish brown, slightly sandy, slightly gravelly becoming gravelly, silty CLAY. Sand is fine to medium. Gravel is tabular, sub-angular and fine to coarse of mudstone and siltstone. [WEATHERED MERCIA MUDSTONE GROUP]		1
			1.50			End of pit at 1.50 m		2
								3
								4
								5
Remarks: 1. Position scanned for services using CAT and Genny.								
Stability: Stable								

Appendix 3

Trial Pit Photographs

Photo 1: SA01

Photo 2: SA01 backfilled

Environmental
Geotechnical
Specialists

Site Name:
Land off Mill Lane

Job No:
C4949/25/E/7546

t. 0843 50 666 87
www.rogersgeotech.co.uk

Photo 1: SA02

Photo 2: SA02 backfilled

Environmental
Geotechnical
Specialists

Site Name:
Land off Mill Lane

Job No:
C4949/25/E/7546

t. 0843 50 666 87
www.rogersgeotech.co.uk

Photo 1: SA03

Photo 2: SA03 backfilled

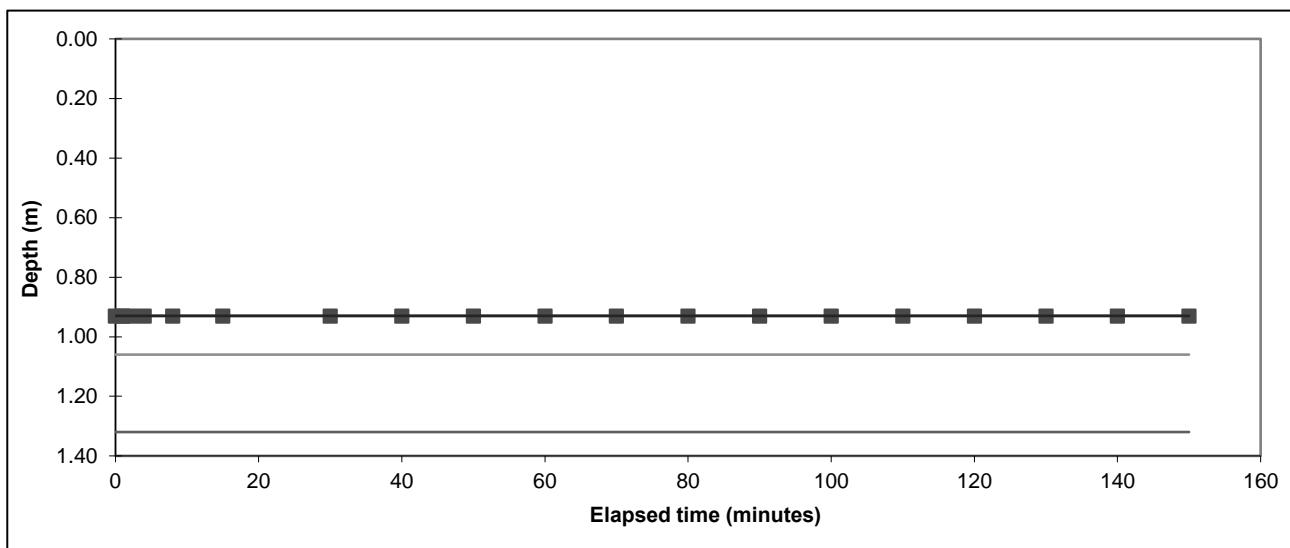
Environmental
Geotechnical
Specialists

Site Name:
Land off Mill Lane

Job No:
C4949/25/E/7546

t. 0843 50 666 87
www.rogersgeotech.co.uk

Appendix 4


Soakaway Results

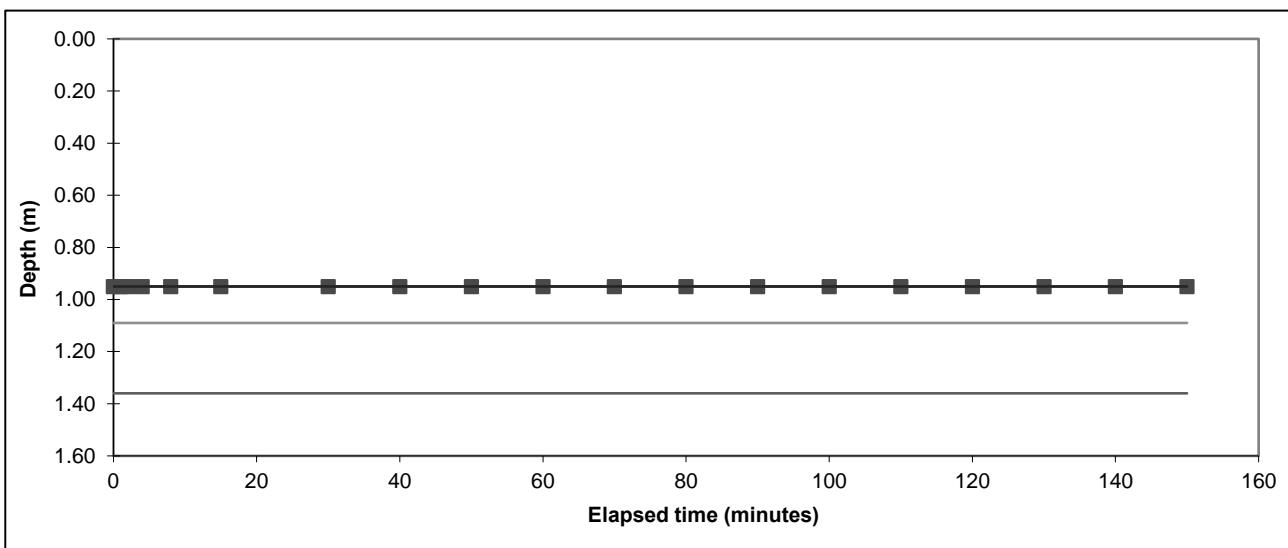
Rogers Geotechnical Services L

Soakaway Test

Trial Pit No:	SA01	Test No:	1	Date:	07.04.2025
Length (m):	1.700	Datum Height:		0.00 m agl	
Width (m):	0.30	Granular infill:	None		
Depth (m):	1.45	Porosity of infill:	1	(assumed)	
Elapsed time (minutes)	Water Depth (m below datum)	Elapsed time (minutes)	Water Depth (m below datum)		
0	0.930	110	0.930		
1	0.930	120	0.930		
2	0.930	130	0.930		
4	0.930	140	0.930		
8	0.930	150	0.930		
15	0.930				
30	0.930				
40	0.930				
50	0.930				
60	0.930				
70	0.930				
80	0.930				
90	0.930				
100	0.930				

Start water depth for analysis (mbgl):	0.93	Elapsed time (mins):	#N/A
75% effective depth (mbgl):	1.06		
50% effective depth (mbgl):	1.19		
25% effective depth (mbgl):	1.32	Elapsed time (mins):	#N/A
Base of soakage zone (mbgl):	1.45		
Volume outflow between 75% and 25% effective depth (m ³):			
Mean surface area of outflow (m ²):		1.55	
(side area at 50% effective depth + base area)			
Time for outflow between 75% and 25% effective depth (mins):			

Soil infiltration rate (m/s):	Test incomplete as 25% effective depth not achieved. Unable to reliably determine soil infiltration rate.
-------------------------------	---


Remarks	Results processed following BRE 365 (2007). Soil appears to be practically impermeable.
---------	--

Client:	Elements Green Trent Ltd	Job No:
Site:	Land off Mill Lane, Kersall, Newark, Nottinghamshire, NG22 0BH	C4949/25/E/7546

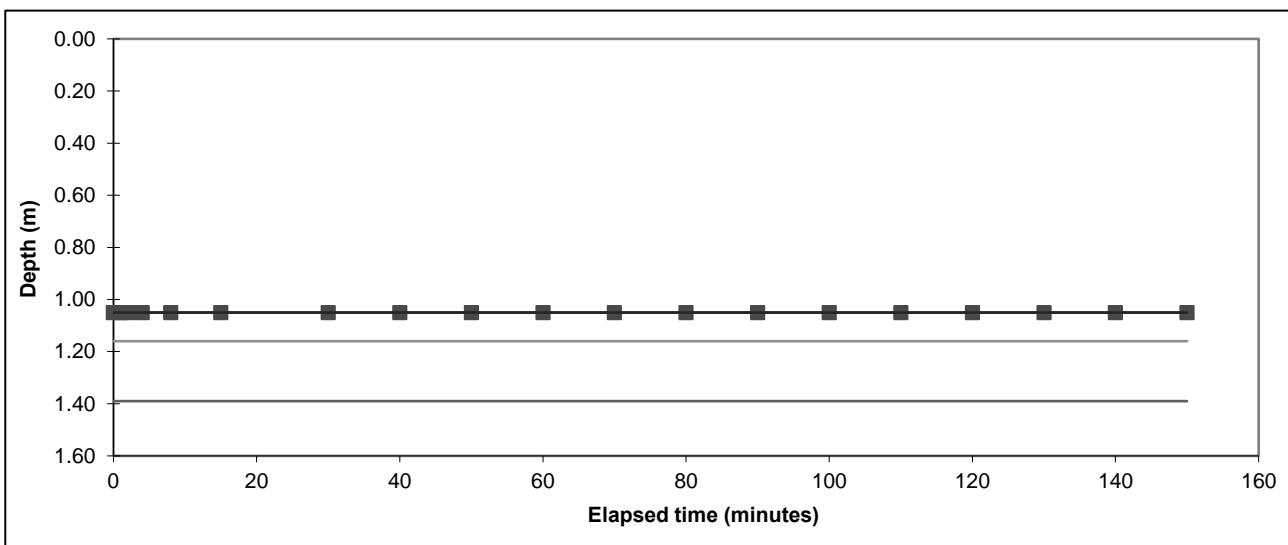
Rogers Geotechnical Services L

Soakaway Test

Trial Pit No:	SA02	Test No:	1	Date:	07.04.2025
Length (m):	1.500	Datum Height:		0.00 m agl	
Width (m):	0.30	Granular infill:	None		
Depth (m):	1.50	Porosity of infill:	1	(assumed)	
Elapsed time (minutes)	Water Depth (m below datum)	Elapsed time (minutes)	Water Depth (m below datum)		
0	0.950	110	0.950		
1	0.950	120	0.950		
2	0.950	130	0.950		
4	0.950	140	0.950		
8	0.950	150	0.950		
15	0.950				
30	0.950				
40	0.950				
50	0.950				
60	0.950				
70	0.950				
80	0.950				
90	0.950				
100	0.950				

Start water depth for analysis (mbgl):	0.95	Elapsed time (mins):	#N/A
75% effective depth (mbgl):	1.09		
50% effective depth (mbgl):	1.23		
25% effective depth (mbgl):	1.36	Elapsed time (mins):	#N/A
Base of soakage zone (mbgl):	1.50		
Volume outflow between 75% and 25% effective depth (m ³):			
Mean surface area of outflow (m ²):		1.42	
(side area at 50% effective depth + base area)			
Time for outflow between 75% and 25% effective depth (mins):			

Soil infiltration rate (m/s):	Test incomplete as 25% effective depth not achieved. Unable to reliably determine soil infiltration rate.
-------------------------------	---


Remarks	Results processed following BRE 365 (2007). Soil appears to be practically impermeable.
---------	--

Client:	Elements Green Trent Ltd	Job No:
Site:	Land off Mill Lane, Kersall, Newark, Nottinghamshire, NG22 0BH	C4949/25/E/7546

Rogers Geotechnical Services L

Soakaway Test

Trial Pit No:	SA03	Test No:	1	Date:	07.04.2025
Length (m):	1.700	Datum Height:		0.00 m agl	
Width (m):	0.30	Granular infill:	None		
Depth (m):	1.50	Porosity of infill:	1	(assumed)	
Elapsed time (minutes)	Water Depth (m below datum)	Elapsed time (minutes)	Water Depth (m below datum)		
0	1.050	110	1.050		
1	1.050	120	1.050		
2	1.050	130	1.050		
4	1.050	140	1.050		
8	1.050	150	1.050		
15	1.050				
30	1.050				
40	1.050				
50	1.050				
60	1.050				
70	1.050				
80	1.050				
90	1.050				
100	1.050				

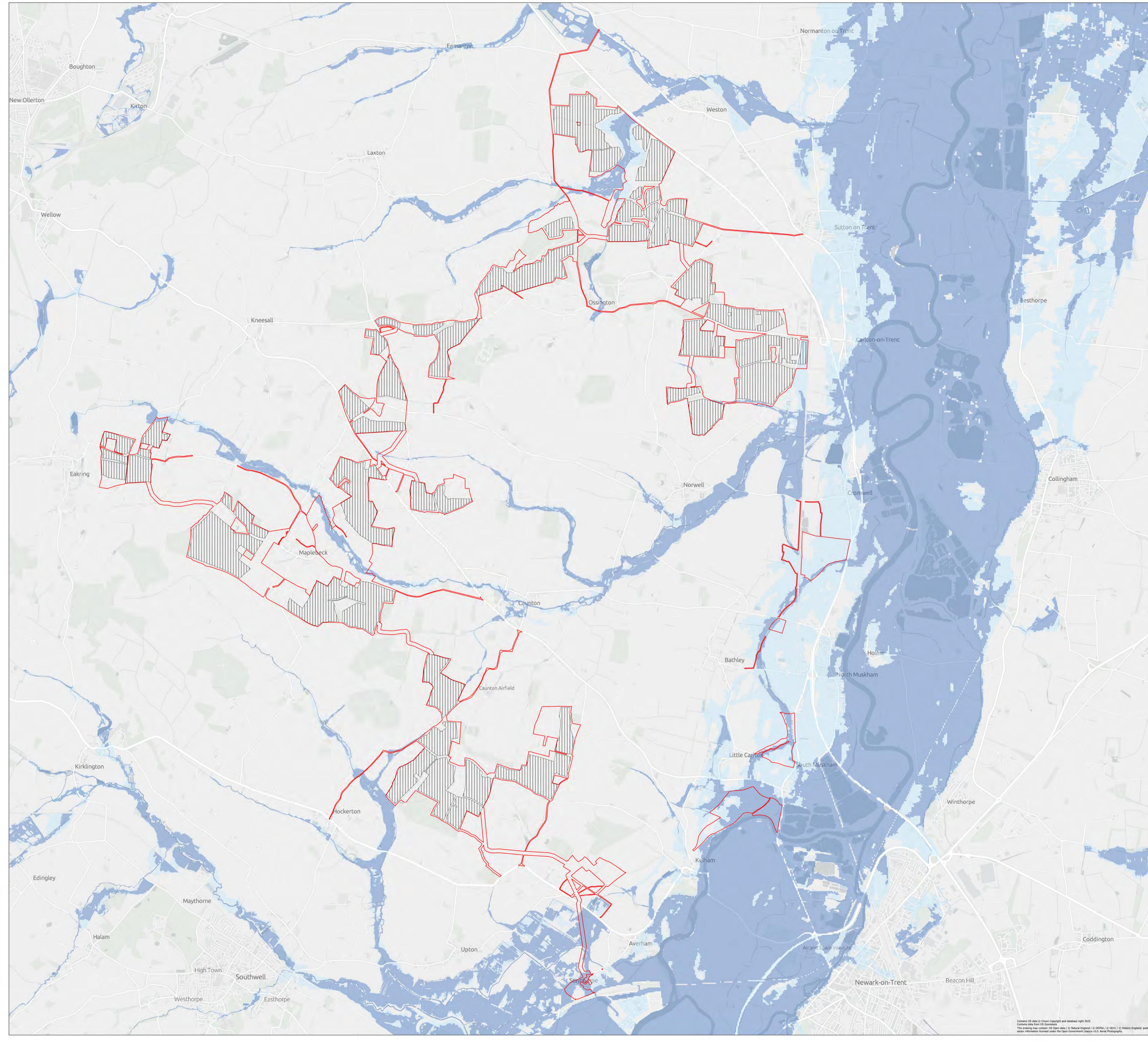
Start water depth for analysis (mbgl):	1.05	Elapsed time (mins):	#N/A
75% effective depth (mbgl):	1.16		
50% effective depth (mbgl):	1.28	Elapsed time (mins):	#N/A
25% effective depth (mbgl):	1.39	Elapsed time (mins):	#N/A
Base of soakage zone (mbgl):	1.50		
Volume outflow between 75% and 25% effective depth (m ³):			
Mean surface area of outflow (m ²):		1.39	
(side area at 50% effective depth + base area)			
Time for outflow between 75% and 25% effective depth (mins):			

Soil infiltration rate (m/s):	Test incomplete as 25% effective depth not achieved. Unable to reliably determine soil infiltration rate.
-------------------------------	---

Remarks	Results processed following BRE 365 (2007). Soil appears to be practically impermeable.
---------	--

Client:	Elements Green Trent Ltd	Job No:
Site:	Land off Mill Lane, Kersall, Newark, Nottinghamshire, NG22 0BH	C4949/25/E/7546

APPENDIX C: ~~SEQUENTIAL TEST~~FIGURES



LIST OF FIGURES

<i>Drawing Number</i>	<i>Revision</i>	<i>Drawing Title</i>	<i>Scale</i>
014-ES-020-Rev02	03	Figure A9.1 Flood Zones 2025	1:30,000 @ A1
014-ES-021-Rev02	02	Figure A9.2 Flood Zone 3b (reproduced from SFRA)	1:20,000 @ A1
014-ES-021a-Rev02	02	Figure A9.3 3.33% AEP Defended CCP1 Extents	1:20,000 @ A1
014-ES-008-Rev02	02	Figure A9.4 Existing Flood Defences	1:30,000 @ A1
014-ES-028-Rev02	02	Figure A9.5 1 % AEP Pluvial Flood Extents	1:30,000 @ A1
014-ES-022-Rev02	02	Figure A9.6 1 % AEP Flood Depths (EA - RoFSW 2025)	1:30,000 @ A1
014-ES-029-Rev02	03	Figure A9.7 1 % AEP Flood Depths (Raincloud 2D Modelling)	1:30,000 @ A1
014-ES-007-Rev02	02	Figure A9.8 Reservoir Flood Extents	1:30,000 @ A1
014-ES-012-Rev02	02	Figure A9.9 Reservoir Flood Extents - Dry Day Scenario	1:20,000 @ A1
014-ES-009-Rev02	02	Figure A9.10 Historic Flood Outlines	1:30,000 @ A1
014-ES-010-Rev02	02	Figure A9.11 Recent Flood Outlines	1:30,000 @ A1
014-ES-065-Rev02	02	Figure A9.12 Flood Studies Catchments	1:30,000 @ A1
014-ES-014-Rev02	02	Figure A9.13 Tidally Dominated 0.5 % AEP 2121 (Upper End) Scenario	1:30,000 @ A1
014-ES-013-Rev02	02	Figure A9.14 Fluvially Dominated 1 % AEP + 62 % CC Scenario	1:30,000 @ A1
014-ES-015-Rev02	02	Figure A9.15 Combined Tidal Breach Outline	1:20,000 @ A1
014-ES-016-Rev02	02	Figure A9.16 1 % AEP - River Trent	1:20,000 @ A1
014-ES-017-Rev02	02	Figure A9.17 1 % AEP + 30 % CC - River Trent	1:30,000 @ A1
014-ES-031a-Rev02	02	Figure A9.18 1 % AEP Defended Extents (CCP1)	1:30,000 @ A1
014-ES-047-Rev02	02	Figure A9.19 1%AEP+30% CC and + 39% CC scenarios	1:30,000 @ A1
014-ES-049b-Rev02	02	Figure A9.20 1% Undefended CCP1	1:1000 @ A1
014-ES-048-Rev02	03	Figure A9.21 Moorhouse Beck – Flood Zones	1:10,000 @ A1
014-ES-059-Rev02	02	Figure A9.22 RSuDS enhancement areas	1:30,000 @ A1

<i>Drawing Number</i>	<i>Revision</i>	<i>Drawing Title</i>	<i>Scale</i>
		associated with the Development	
014-ES-057-Rev02	02	Figure A9.23 Maplebeck 1 % AEP - Baseline	1:5,000@A1
014-ES-058-Rev02	02	Figure A9.24 1 % AEP - Grass Mix under PV Arrays	1:5,000@A1
014-ES-061-Rev02	02	Figure A9.25 Slope within Work Area 1	1:30,000@A1

1:30,000 Scale @ A1

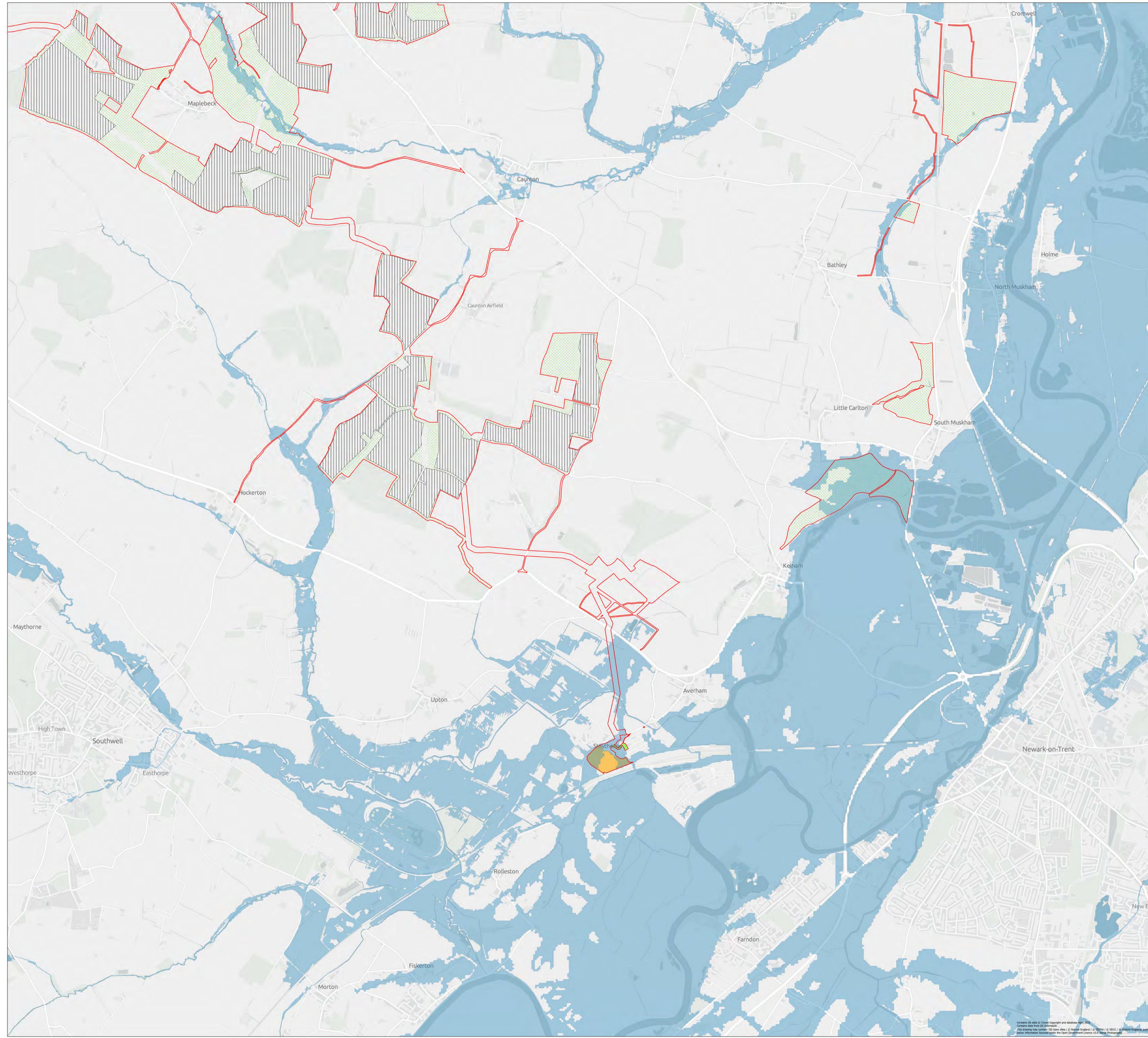
0 0.5 1 2 km

Ref: 014-ES-020-Rev03 Date: 09/12/2025

Flood Zones 2025 Figure A9.1

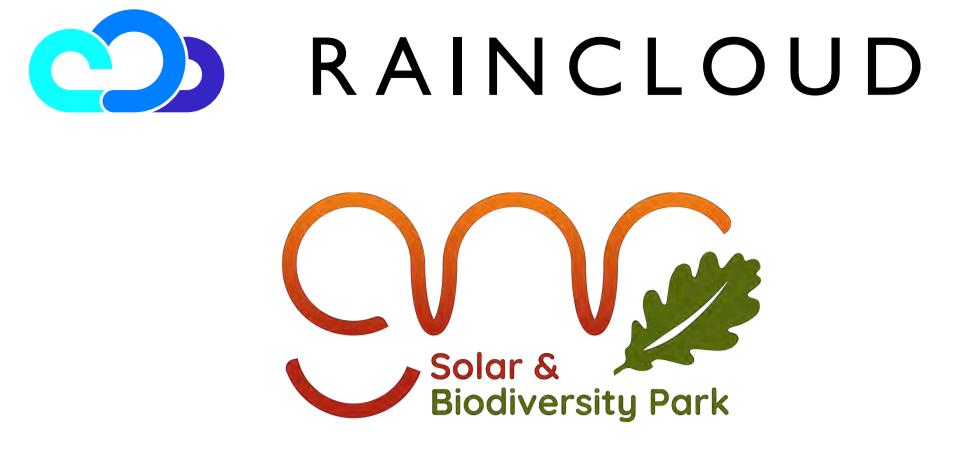
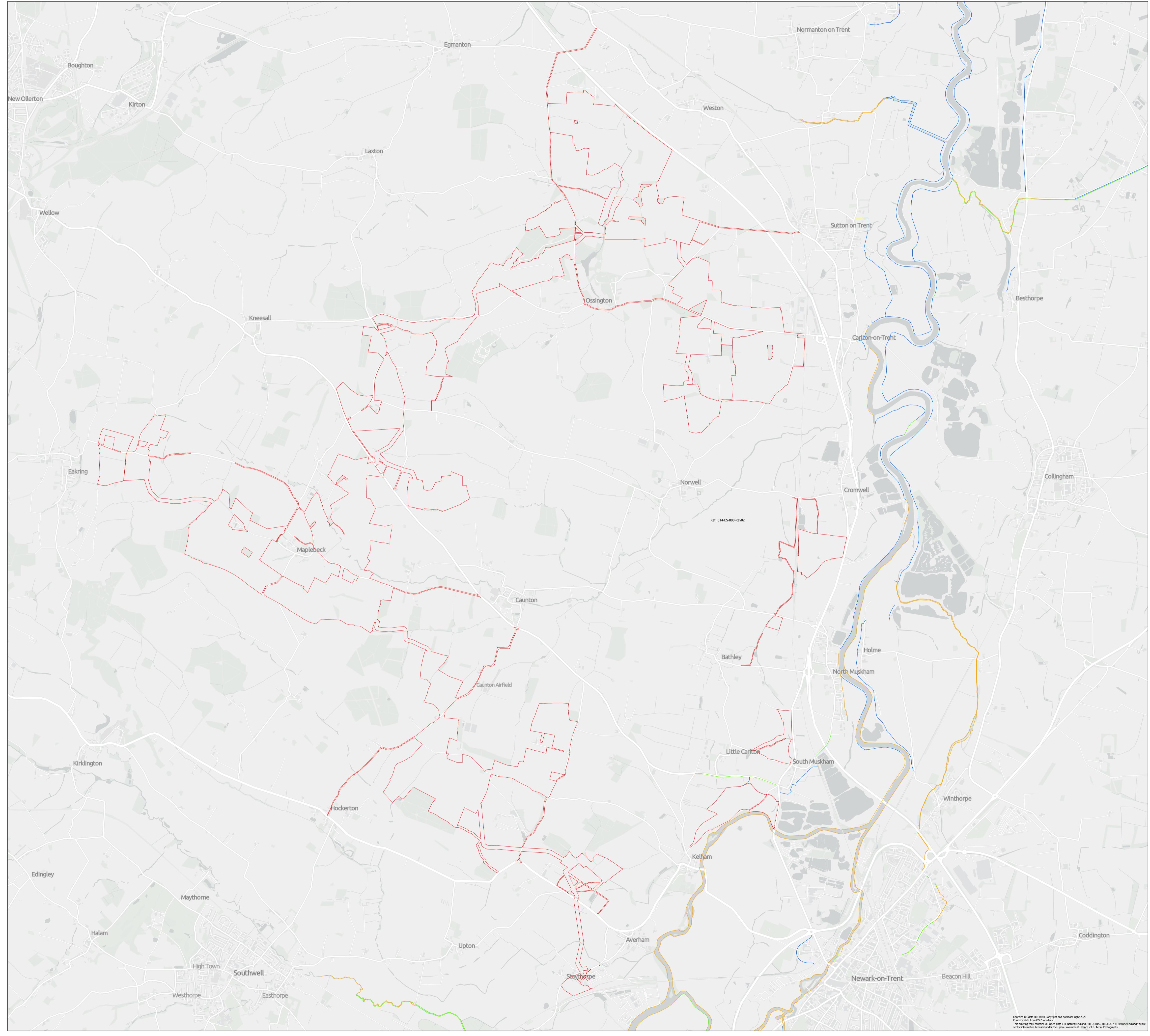
Great North Road Solar and
Biodiversity Park
Flood Risk Assessment

- Order Limits / Core Study Area
- Works Area 1: Solar PV
- Works Area 3: Mitigation
- Works Area 6: National Grid Substation
- Works Area 7: Staythorpe BESS Connection
- Flood Zone 3b (5% AEP from SFRA)


1:20,000 Scale @ A1

0 0.25 0.5 1 km

Ref: 014-ES-021-Rev02 Date: 13/08/2025



**Flood Zone 3b
(reproduced from SFRA)
Figure A9.2**

**Great North Road Solar and
Biodiversity Park
Flood Risk Assessment**

Order Limits / Core Study Area
 Works Area 1: Solar PV
 Works Area 3: Mitigation
 Works Area 6: National Grid Substation
 Works Area 7: Staythorpe BESS Connection
 3.33 % AEP Defended CCP1

3.33 % AEP Defended CCP1 Extents
Figure A9.3
Great North Road Solar and Biodiversity Park
Flood Risk Assessment

Order Limits / Core Study Area

Flood Defence

Demountable Defence

Embankment

Engineered High Ground

Flood Gate

Natural High Ground

Wall

1:30,000 Scale @ A1

0 0.5 1 2 km

Ref: 014-ES-008-Rev02 Date: 12/08/2025

Existing Flood Defences Figure A9.4

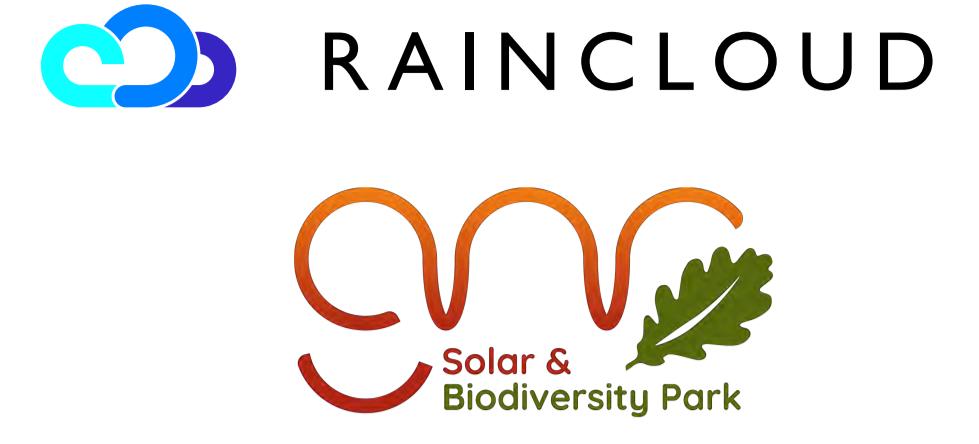
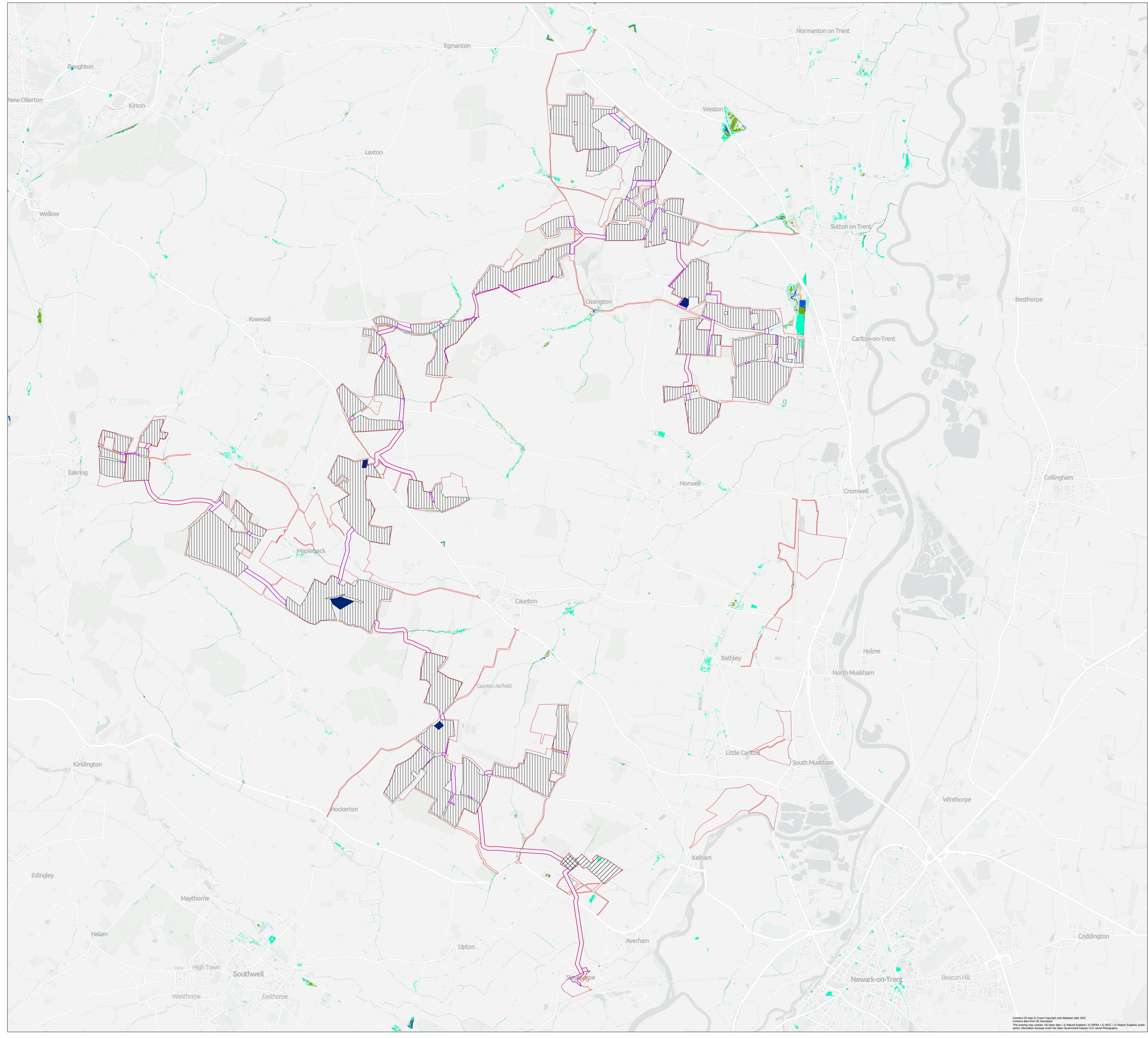
Great North Road Solar and
Biodiversity Park
Flood Risk Assessment

Order Limits / Core Study Area

RoFSW

Risk Band

Medium



1:30,000 Scale @ A1

0 0.5 1 2 km

Ref: 014-ES-028-Rev02 Date: 12/08/2025

1 % AEP Pluvial Flood Extents
Figure A9.5

**Great North Road Solar and
 Biodiversity Park
 Flood Risk Assessment**

Order Limits / Core Study Area

Works Area 1: Solar PV

Works Area 2: Cable

Works Area 4: Substations

Works Area 5a: BESS

Works Area 5b: 400kV Substation

RoFSW - Medium Risk Depth (m)

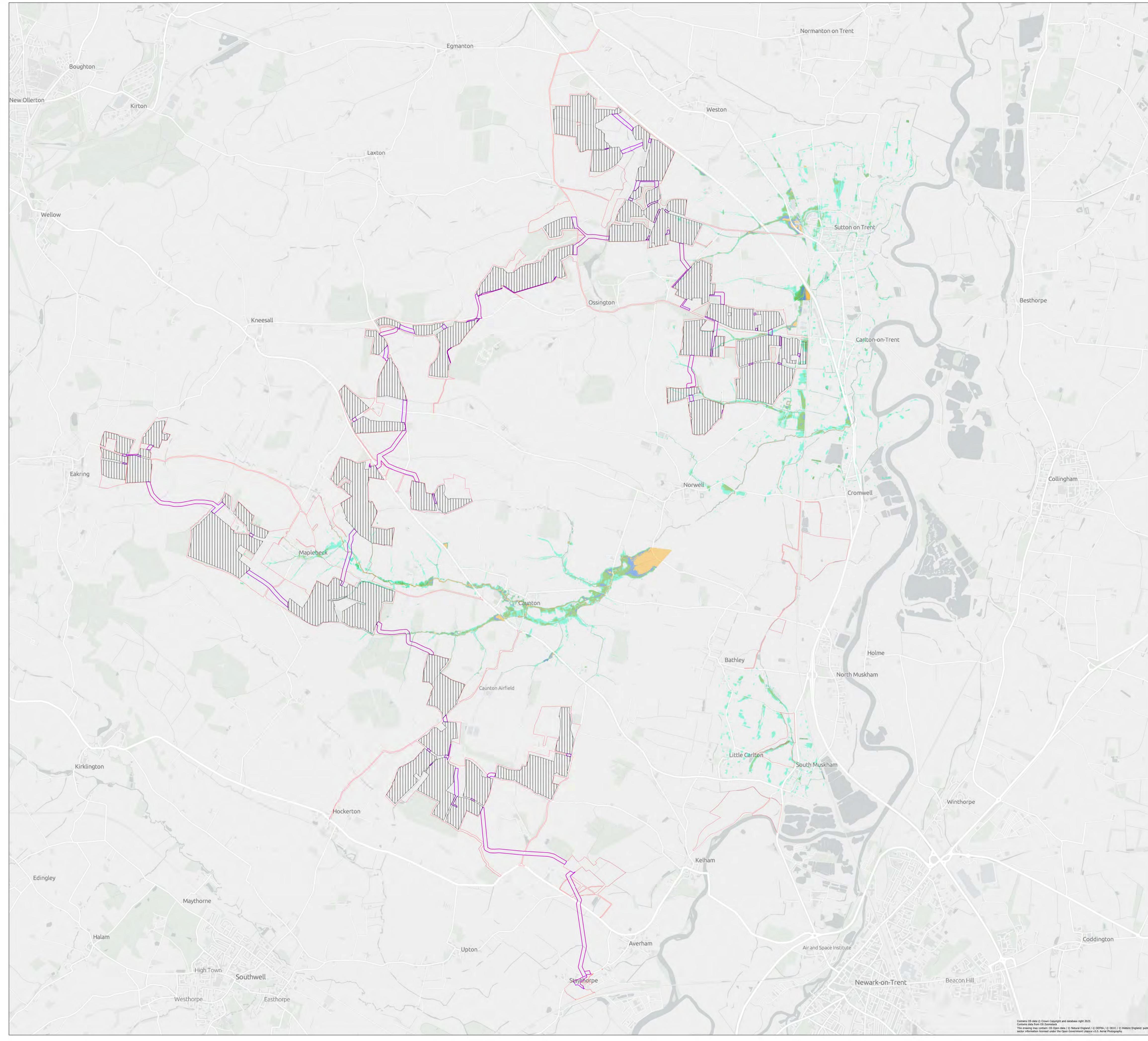
0-0.2

0.3

0.6

0.9

1.2


1:30,000 Scale @ A1

0 0.5 1 2 km

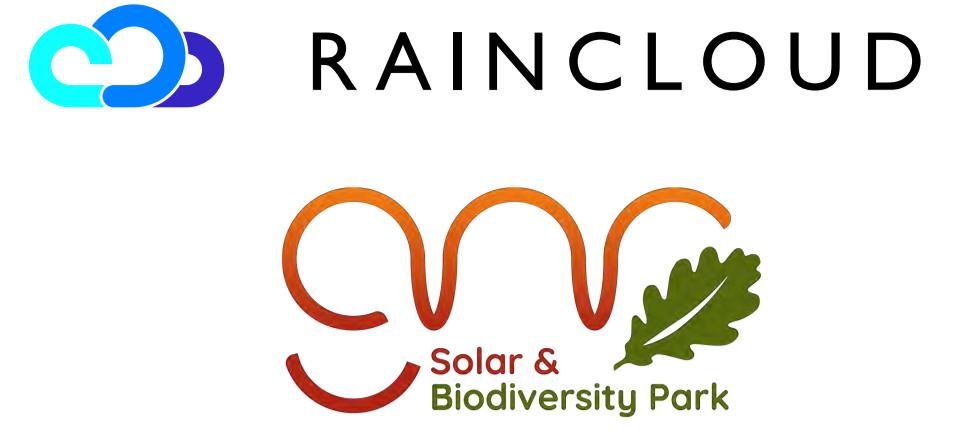
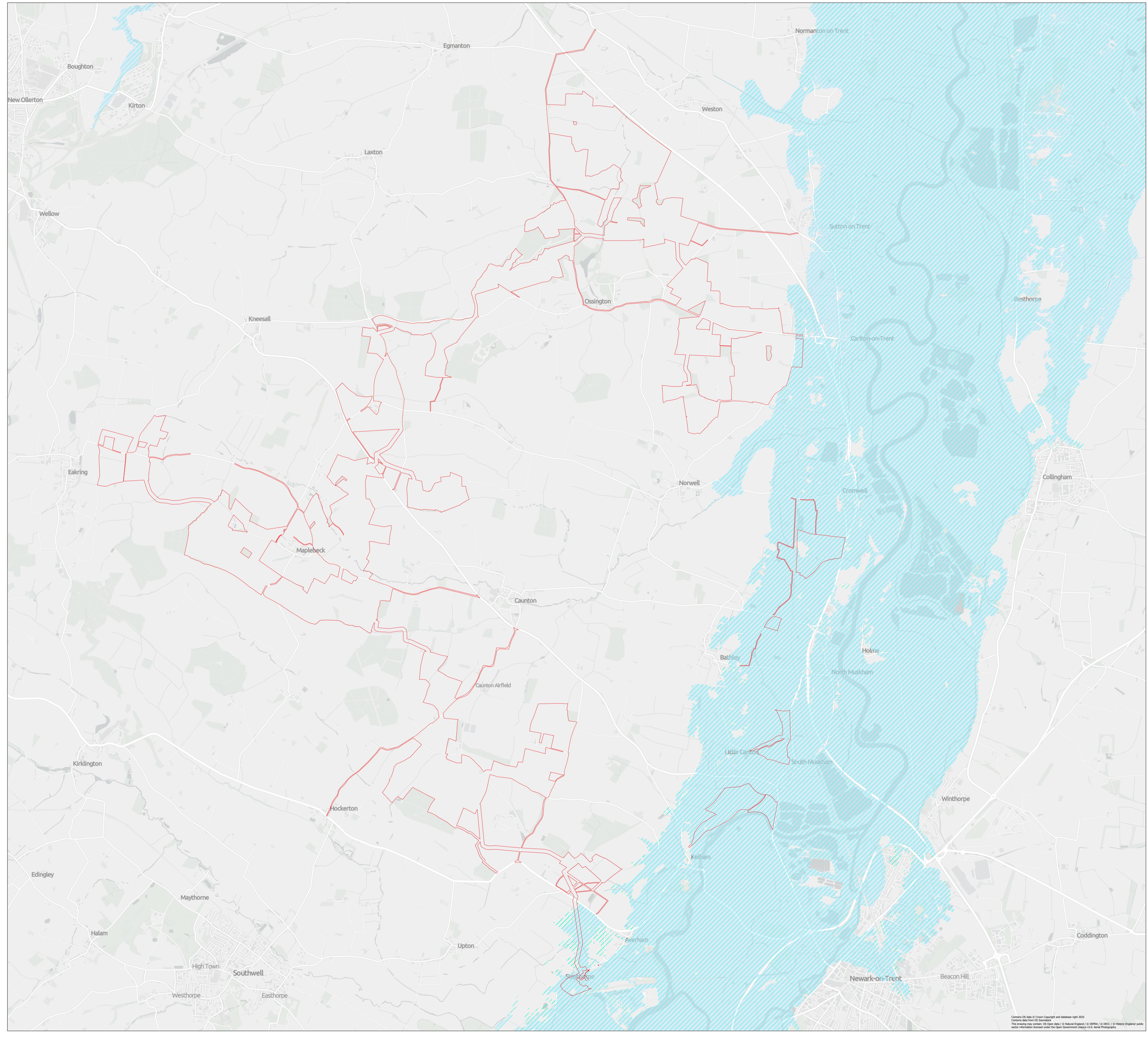
Ref: 014-ES-022-Rev02 Date: 12/08/2025

1 % AEP Flood Depths
(EA - RoFSW 2025)
Figure A9.6

Great North Road Solar and
Biodiversity Park
Flood Risk Assessment

Order Limits / Core Study Area
 Works Area 1: Solar PV
 Works Area 2: Cable
 1% AEP - 2D Model
 Depth (m)

0.011 - 0.15
0.151 - 0.3
0.301 - 0.6
0.601 - 0.9
0.901 - 2.941



1:30,000 Scale @ A1

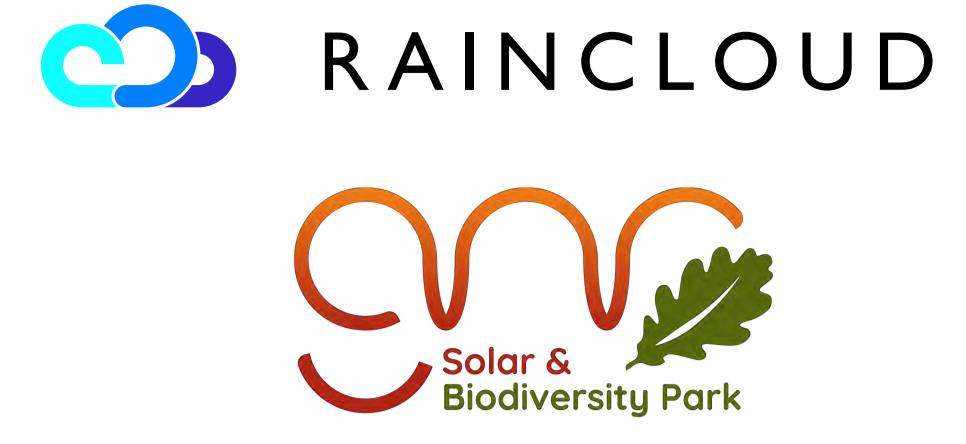
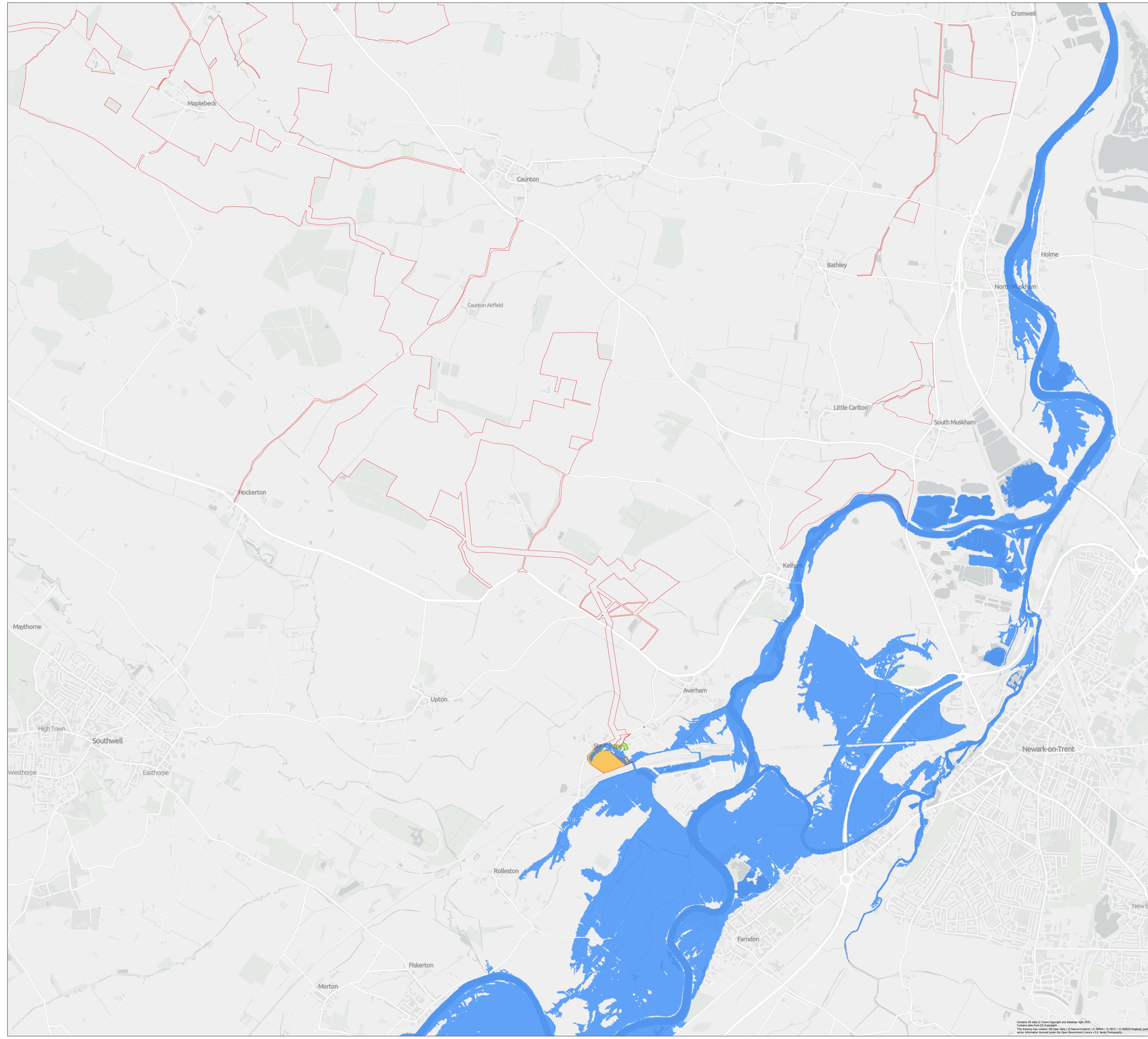
0 0.5 1 2 km

Ref: 014-ES-029-Rev03 Date: 26/11/2025

1 % AEP Flood Depths
 (Raincloud 2D Modelling)
 Figure A9.7

Great North Road Solar and
 Biodiversity Park
 Flood Risk Assessment

Order Limits / Core Study Area
 Extents - Fluvial Contribution
 Extents - Wet Day



1:30,000 Scale @ A1

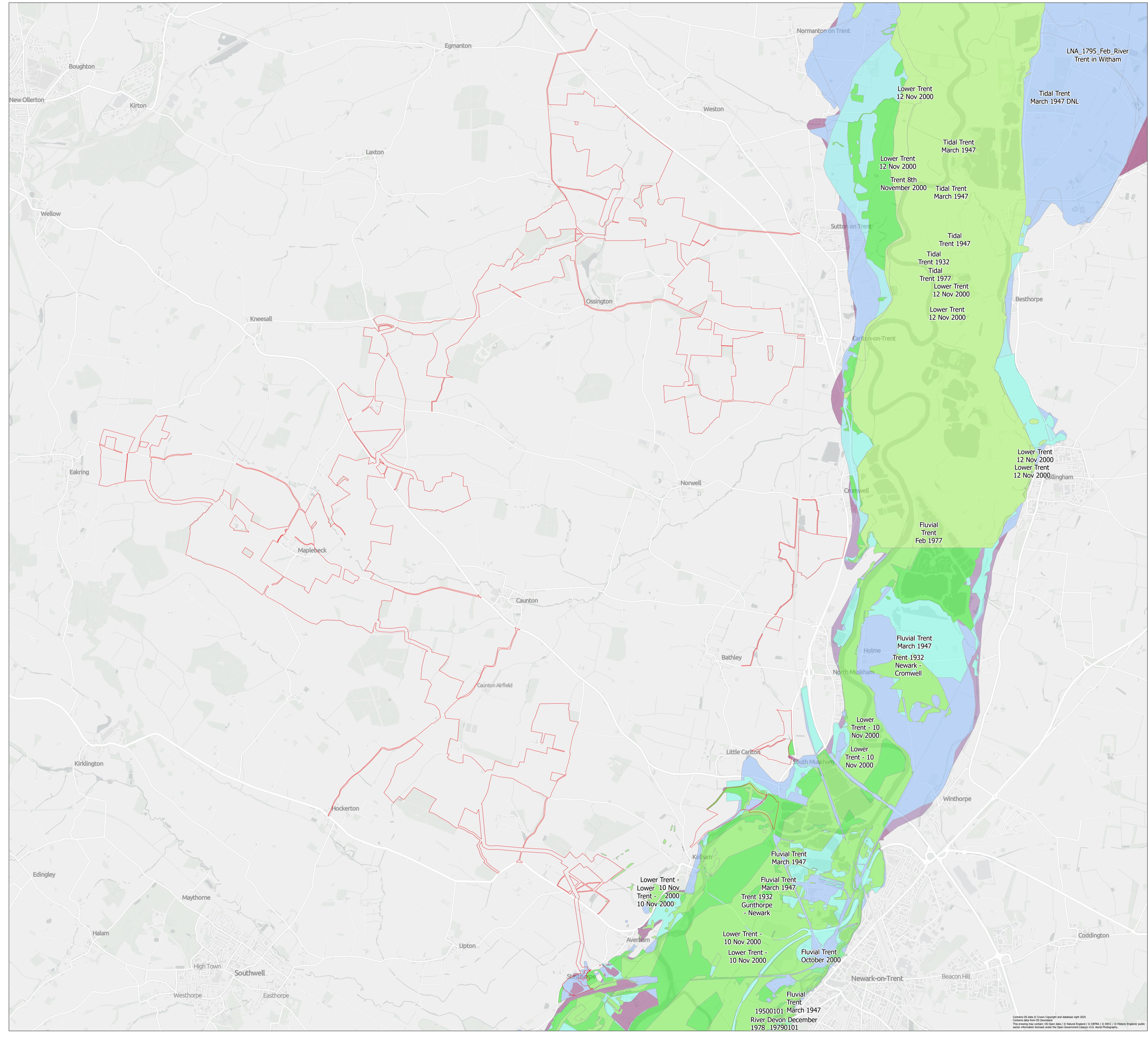
0 0.5 1 2 km

Ref: 014-ES-007-Rev02 Date: 12/08/2025

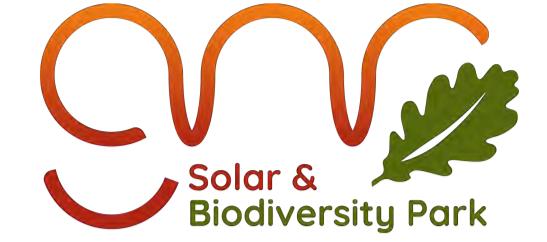
Reservoir Flood Extents Figure A9.8

Great North Road Solar and
Biodiversity Park
Flood Risk Assessment

■ Order Limits / Core Study Area
■ Works Area 6: National Grid Substation
■ Works Area 7: Staythorpe BESS Connection
■ Flood Extents - Dry Day


1:20,000 Scale @ A1

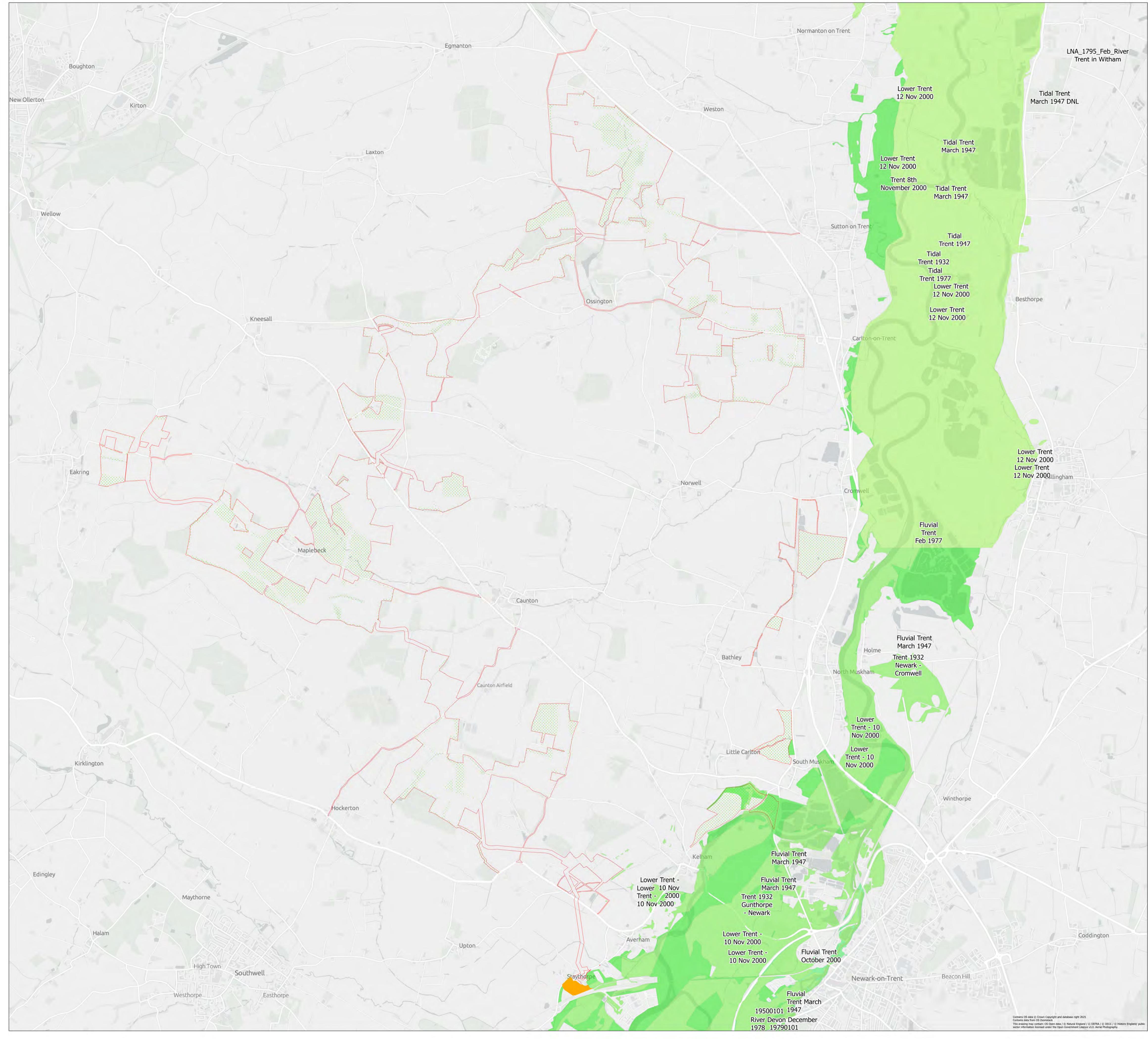
0 0.25 0.5 1 km


Ref: 014-ES-012-Rev02 Date: 12/08/2025

Reservoir Flood Extents - Dry Day Scenario Figure A9.9

Great North Road Solar and Biodiversity Park Flood Risk Assessment

RAIN CLOUD


1:30,000 Scale @ A1

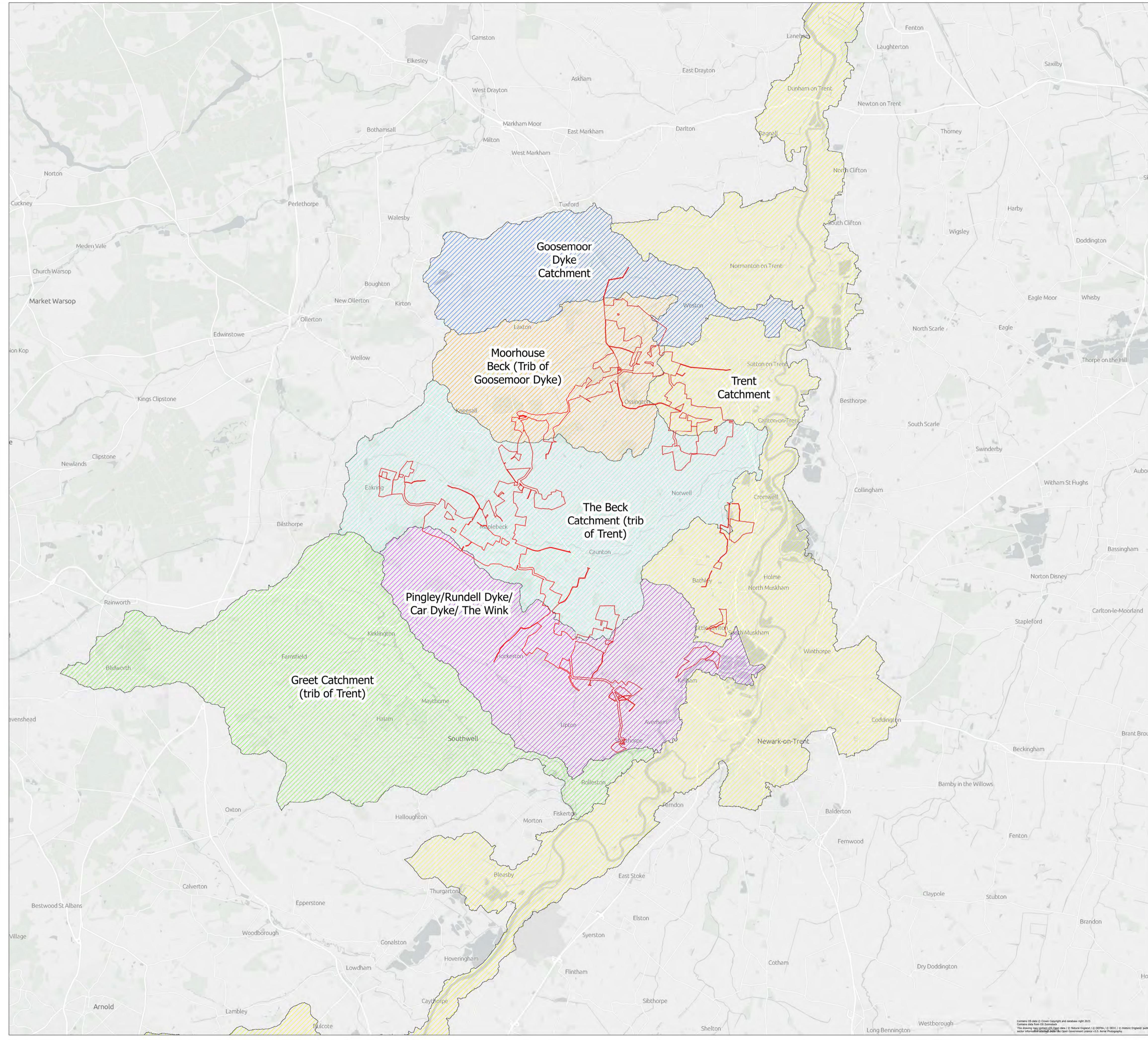
Ref: 014-ES-009-Rev02 Date: 12/08/2025

Historic Flood Outlines Figure A9.10

Great North Road Solar and
Biodiversity Park
Flood Risk Assessment

Date	Type
31/10/2000	Works Area 3: Mitigation
08/11/2000	Works Area 3: Mitigation
10/11/2000	Works Area 3: Mitigation
12/11/2000	Works Area 3: Mitigation
22/06/2007	Works Area 3: Mitigation
25/06/2007	Works Area 7: Staythorpe BESS Connection
01/11/2012	Works Area 7: Staythorpe BESS Connection
16/02/2020	Works Area 7: Staythorpe BESS Connection
20/10/2023	Recorded Flood Outlines >2000
02/01/2024	Recorded Flood Outlines >2000

1:30,000 Scale @ A1



Ref: 014-ES-010-Rev02

Date: 12/08/2025

Recent Flood Outlines Figure A9.11

Great North Road Solar and Biodiversity Park Flood Risk Assessment

Order Limits / Core Study Area

Water Body Catchments

wb_name

Goosemoor Dyke Catchment

Greet Catchment (trib of Trent)

Moorhouse Beck (Trib of Goosemoor Dyke)

Pingley / Rundell Dyke

The Beck Catchment (trib of Trent)

Trent Catchment

Catchment Name

The Beck Catchment (trib of Trent)

Greet Catchment (trib of Trent)

Moorhouse Beck (Trib of Goosemoor Dyke)

Goosemoor Dyke Catchment

Trent Catchment

Pingley / Rundell Dyke / Car Dyke / The Wink

Flood Study

NaRa2 data

River Greet, Nottingham Tributaries SFRM, JBA (2014)

NaRa2 data

NaRa2 data

Tidal Trent, Jacobs (2023)

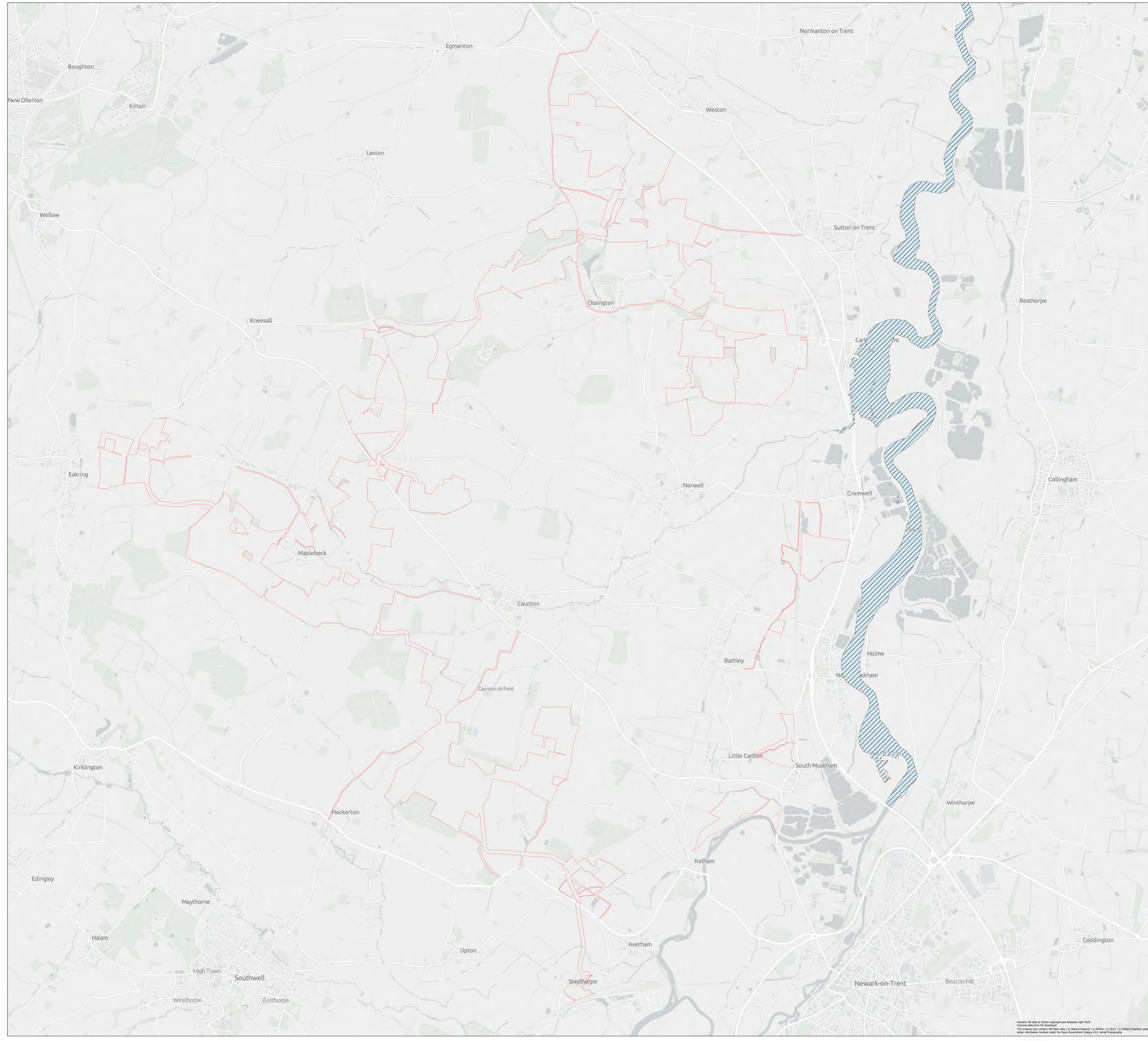
Trent and tributaries at Newark SFRM2 (2011)

Halcrow July 2011 plus the EA climate change (2020 rerun)

Trent and tributaries at Newark SFRM2 (2011)

Raincloud (2025)

1:60,000 Scale @ A1



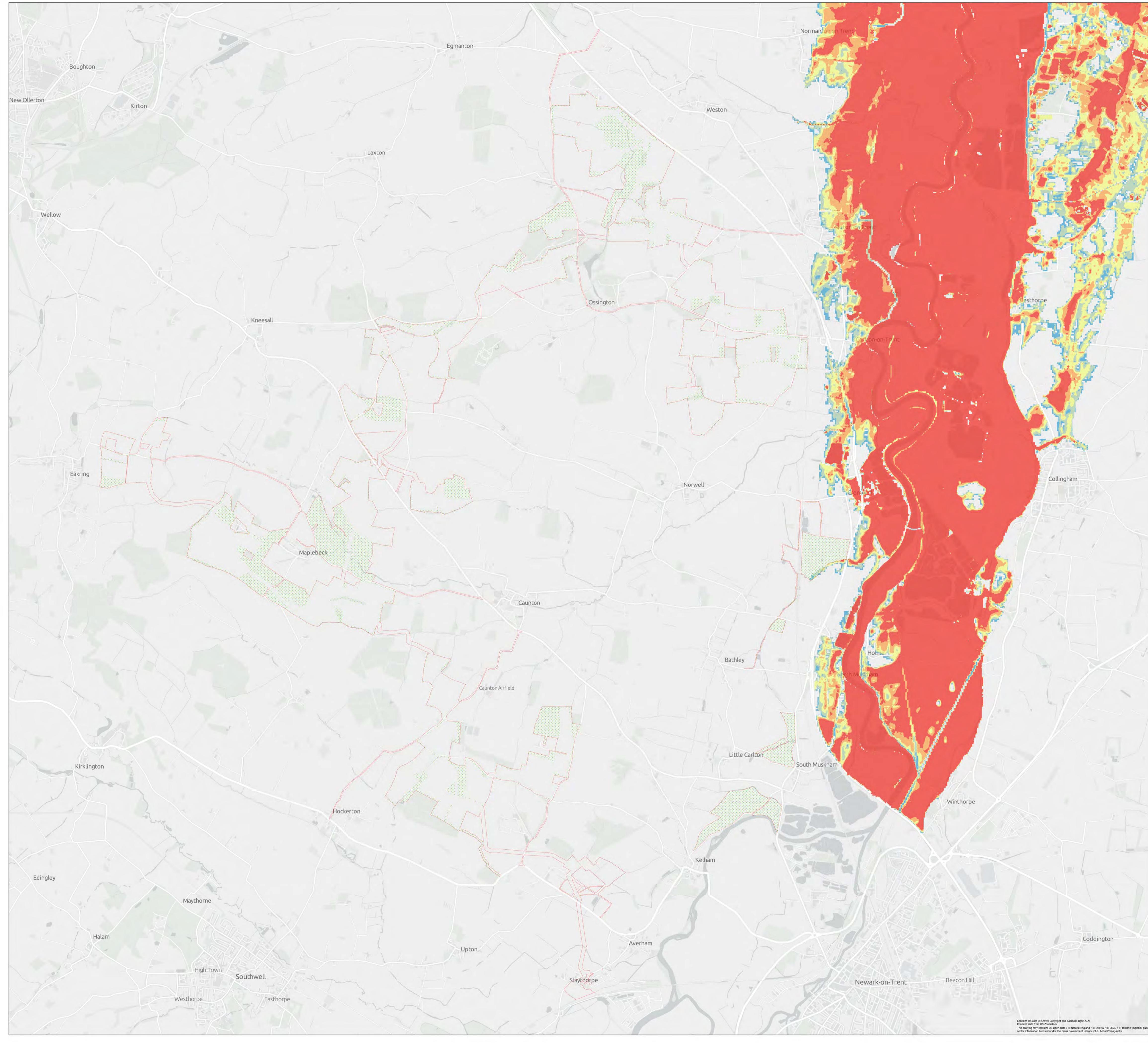
Ref: 014-ES-065-Rev02

Date: 13/08/2025

Flood Studies Catchments Figure A9.12

Great North Road Solar and
Biodiversity Park
Flood Risk Assessment

 Order Limits / Core Study Area
 Tidal 0.5% AEP (2071 UE)
 Tidal 0.5% AEP (2121 UE)


1:30,000 Scale @ A1

0 0.5 1 2 km

Ref: 014-ES-014-Rev02 Date: 13/08/2025

**Tidally Dominated 0.5 % AEP
2121 (Upper End) Scenario
Figure A9.13**

**Great North Road Solar and
Biodiversity Park
Flood Risk Assessment**

Core Study Area
 Works Area 3: Mitigation
 Defended Fluvial 1% AEP + 62% cc
 Depth (m)
 0.011 - 0.1
 0.101 - 0.3
 0.301 - 0.6
 0.601 - 0.9
 0.901 - 2.941

1:30,000 Scale @ A1

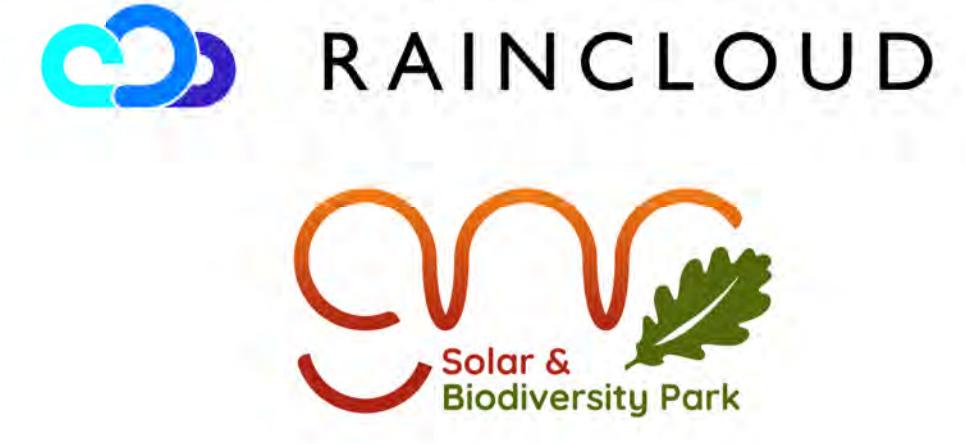
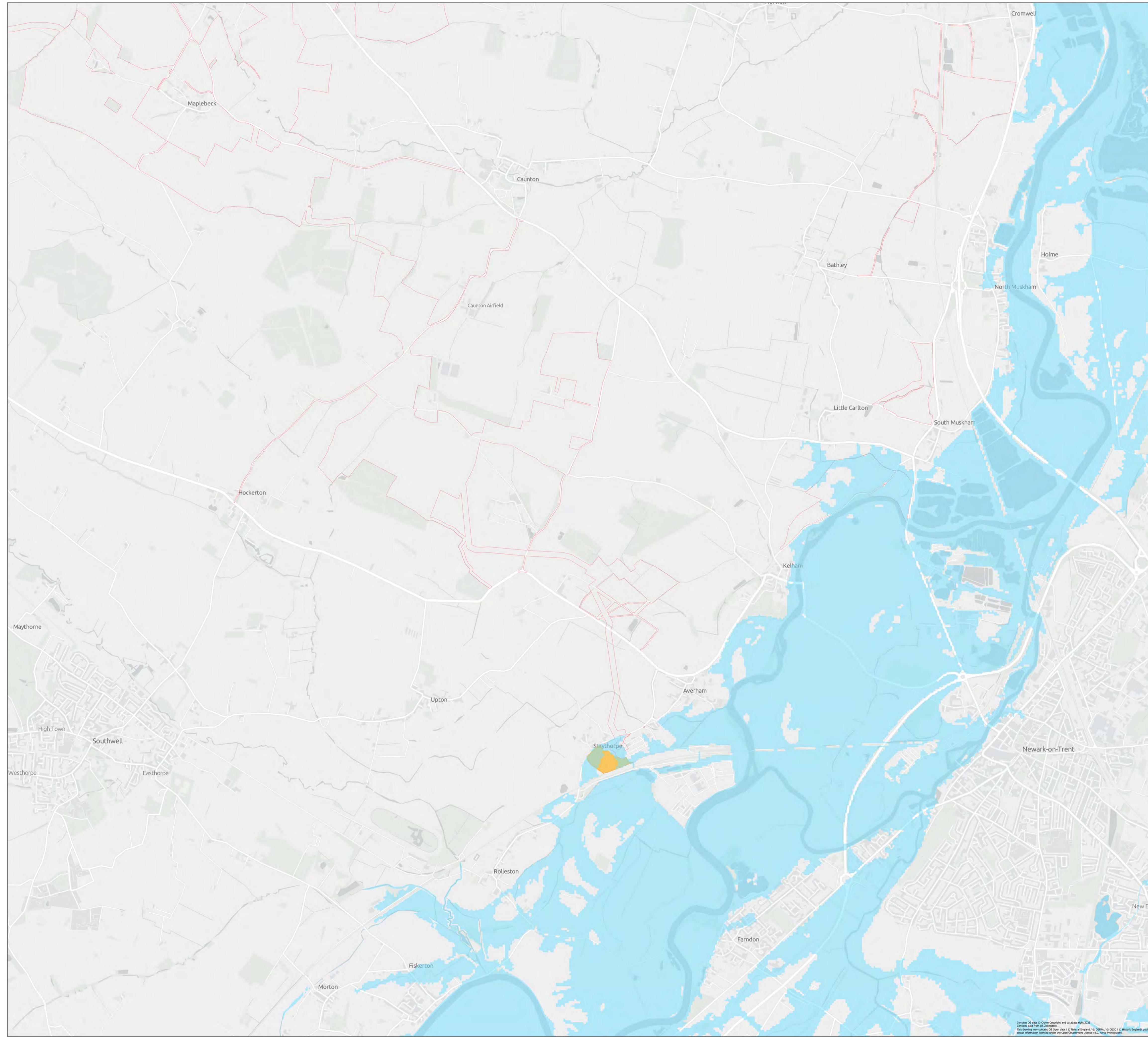
0 0.5 1 2 km

Ref: 014-ES-013-Rev02 Date: 13/08/2025

**Fluvially Dominated
1 % AEP + 62 % CC Scenario
Figure A9.14**

**Great North Road Solar and
Biodiversity Park
Flood Risk Assessment**

 Order Limits / Core Study Area
 Works Area 3: Mitigation
 Combined Defence Breach



1:30,000 Scale @ A1

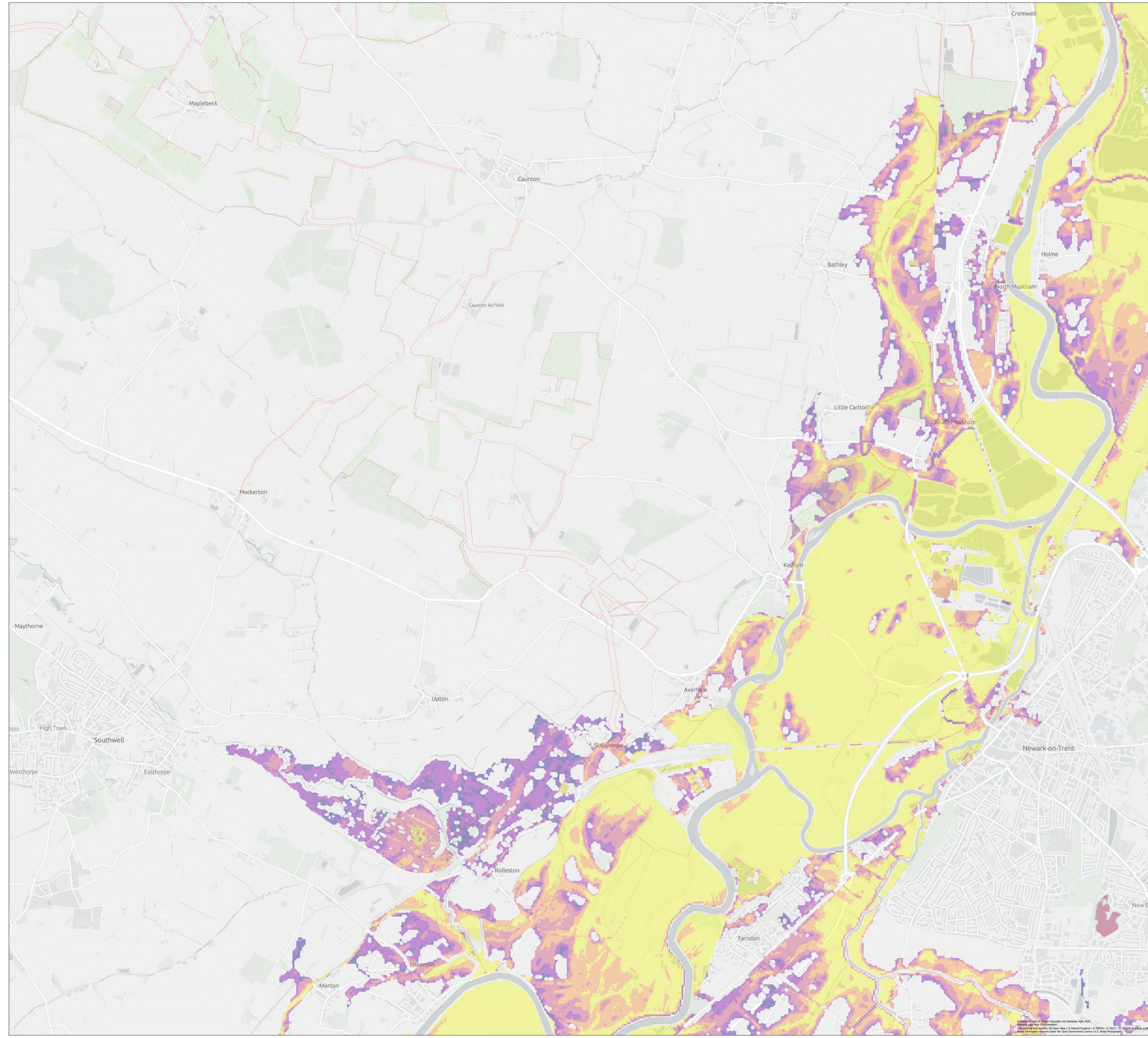
0 0.5 1 2 km

Ref: 014-ES-015-Rev02 Date: 13/08/2025

Combined Tidal Breach Outline Figure A9.15

Great North Road Solar and
Biodiversity Park
Flood Risk Assessment

Order Limits / Core Study Area
Works Area 7: Staythorpe BESS Connection
1% AEP


1:20,000 Scale @ A1

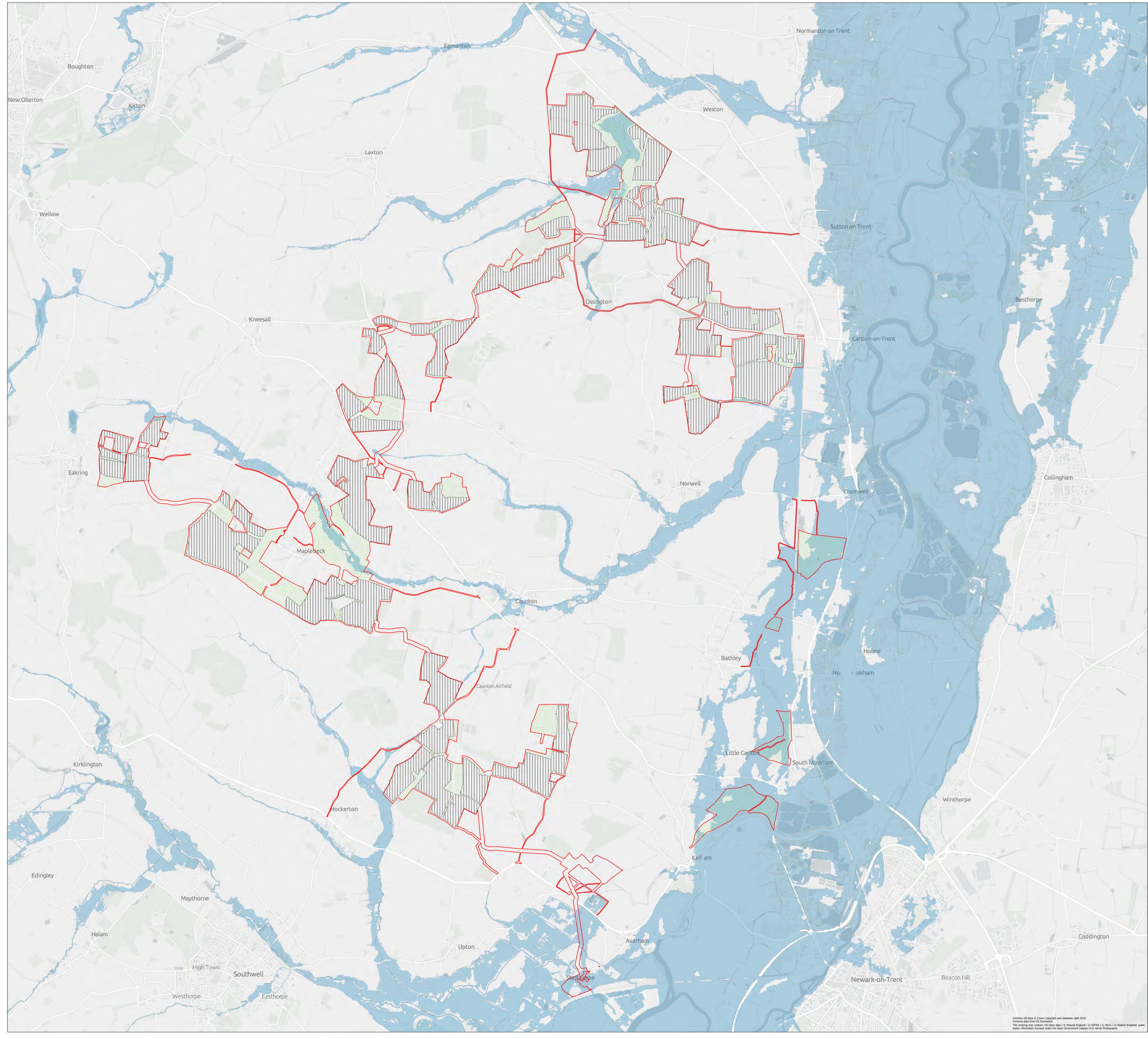
0 0.25 0.5 1 km

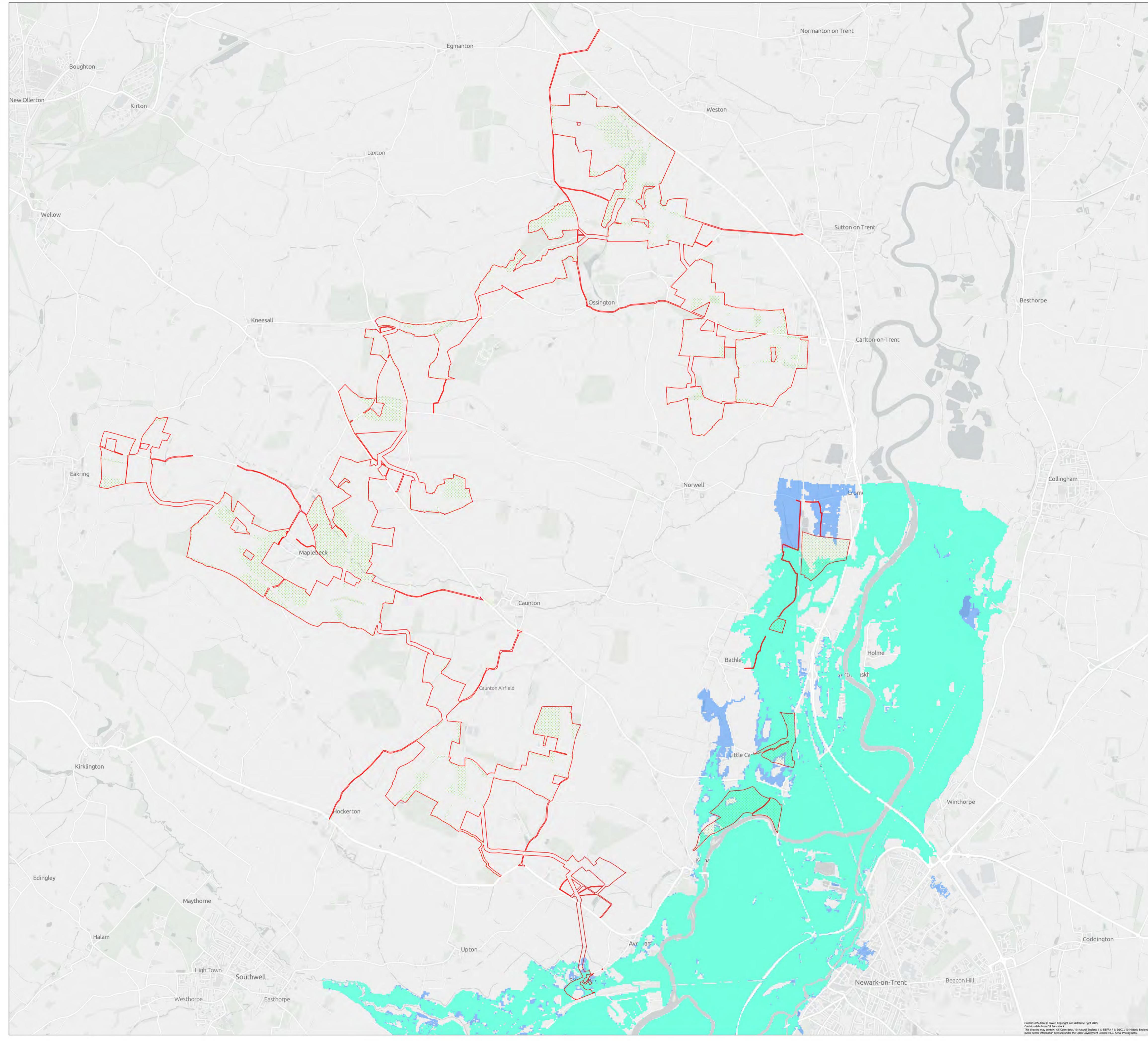
Ref: 014-ES-016-Rev02 Date: 13/08/2025

1 % AEP - River Trent
Figure A9.16

Great North Road Solar and
Biodiversity Park
Flood Risk Assessment

Order Limits / Core Study Area
 Works Area 3: Mitigation
 1% AEP + 30% cc
 Depth (m)
 0.011 - 0.1
 0.101 - 0.3
 0.301 - 0.6
 0.601 - 0.9
 0.901 - 2.941


1:20,000 Scale @ A1

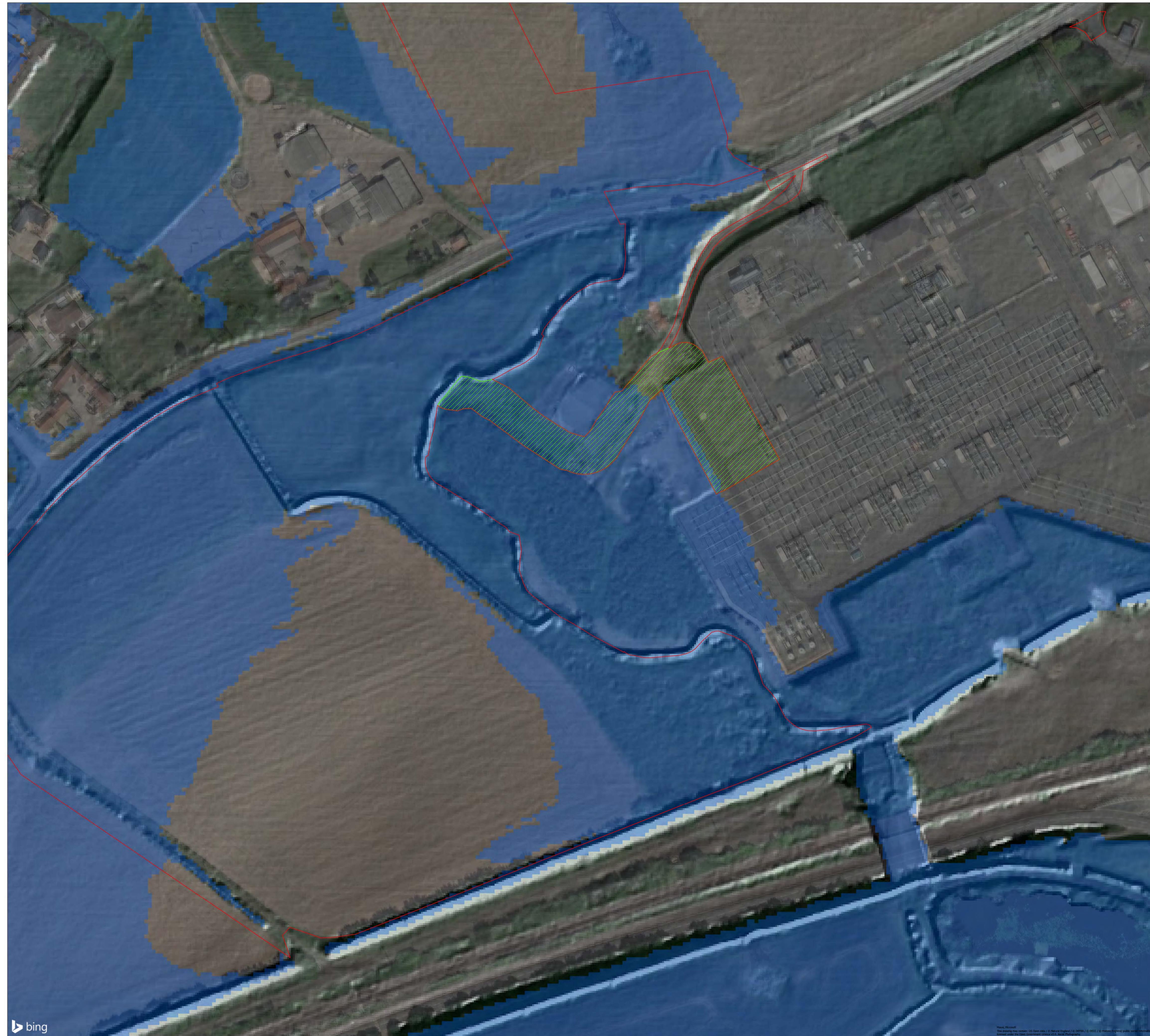

0 0.25 0.5 1 km

Ref: 014-ES-017-Rev02 Date: 13/08/2025

1 % AEP + 30 % CC - River Trent
 Figure A9.17

Great North Road Solar and
 Biodiversity Park
 Flood Risk Assessment

Order Limits / Core Study Area
 Works Area 3: Mitigation
 1% AEP + 30% CC
 1 % AEP + 39 % CC


1:30,000 Scale @ A1

0 0.5 1 2 km

Ref: 014-ES-047-Rev02 | Date: 12/08/2025

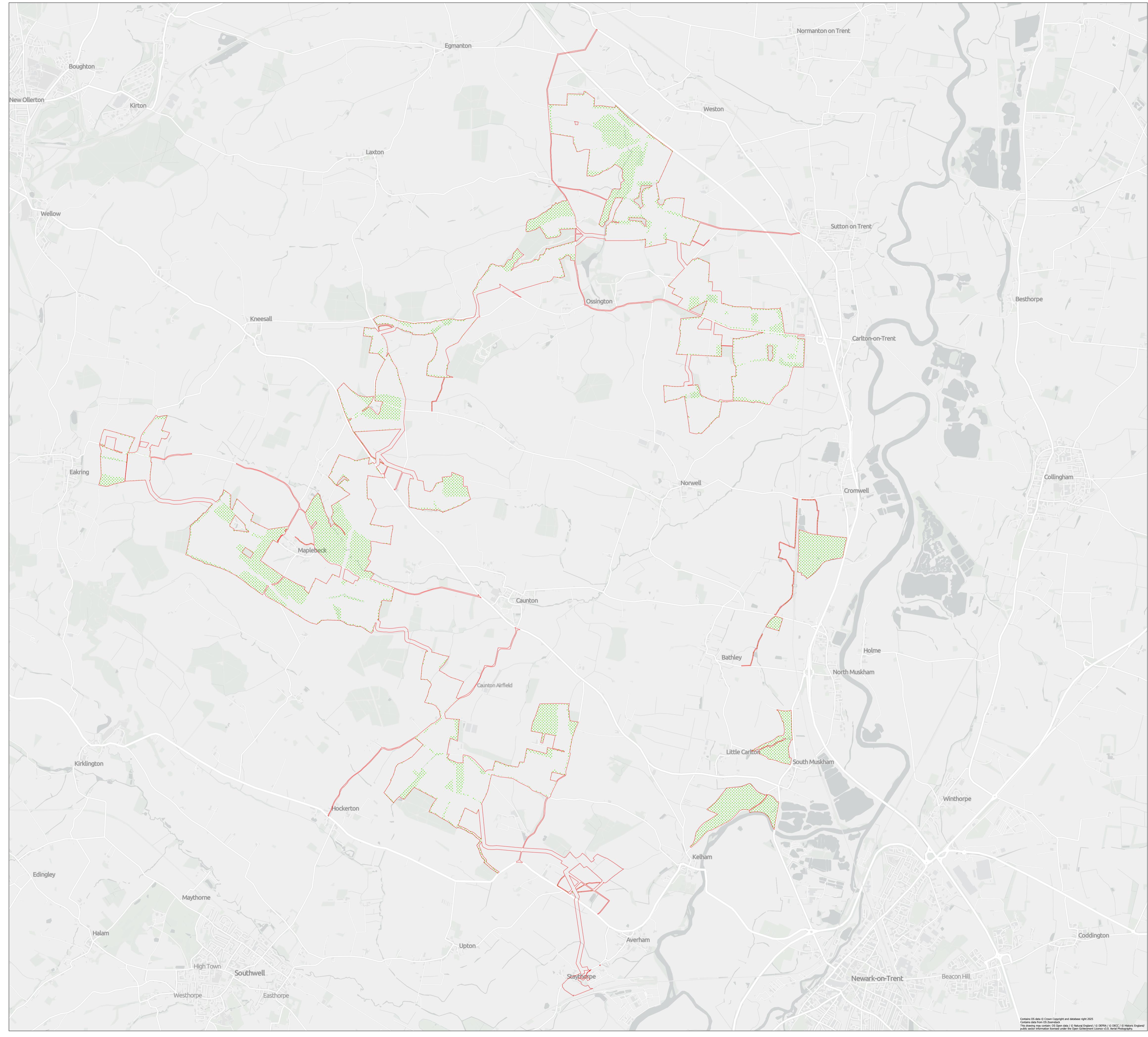
1 % AEP + 30 % CC and
+ 39 % CC scenarios
Figure A9.19

Great North Road Solar and
Biodiversity Park
Flood Risk Assessment

Order Limits / Core Study Area
Works Area: 6 National Grid Substation
1% AEP Undefended Extents (CCP1)

1:1,000 Scale @ A1

0 0.01 0.03 0.06 km

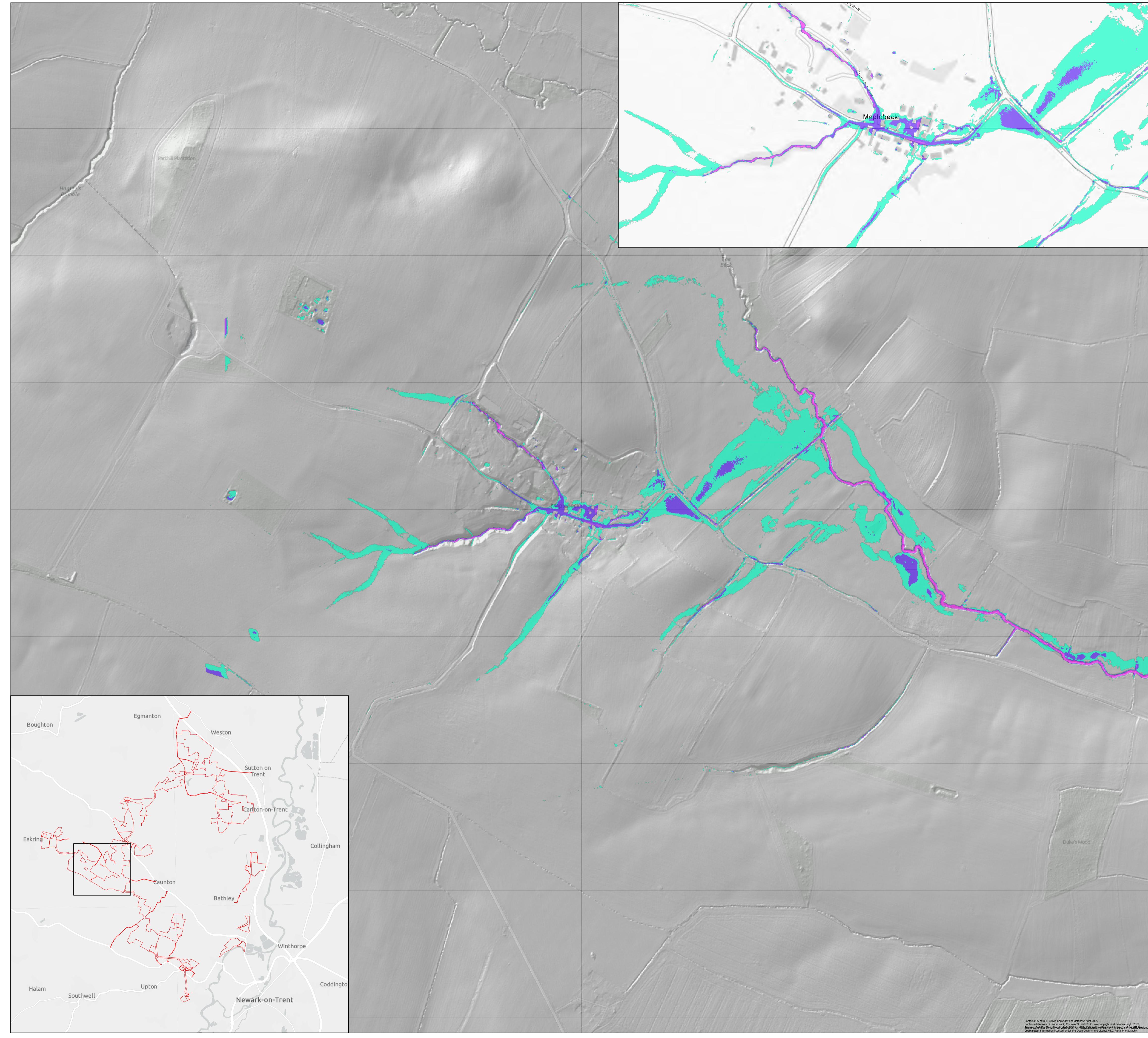

Ref: 014-ES-049b

Date: 13/08/2025

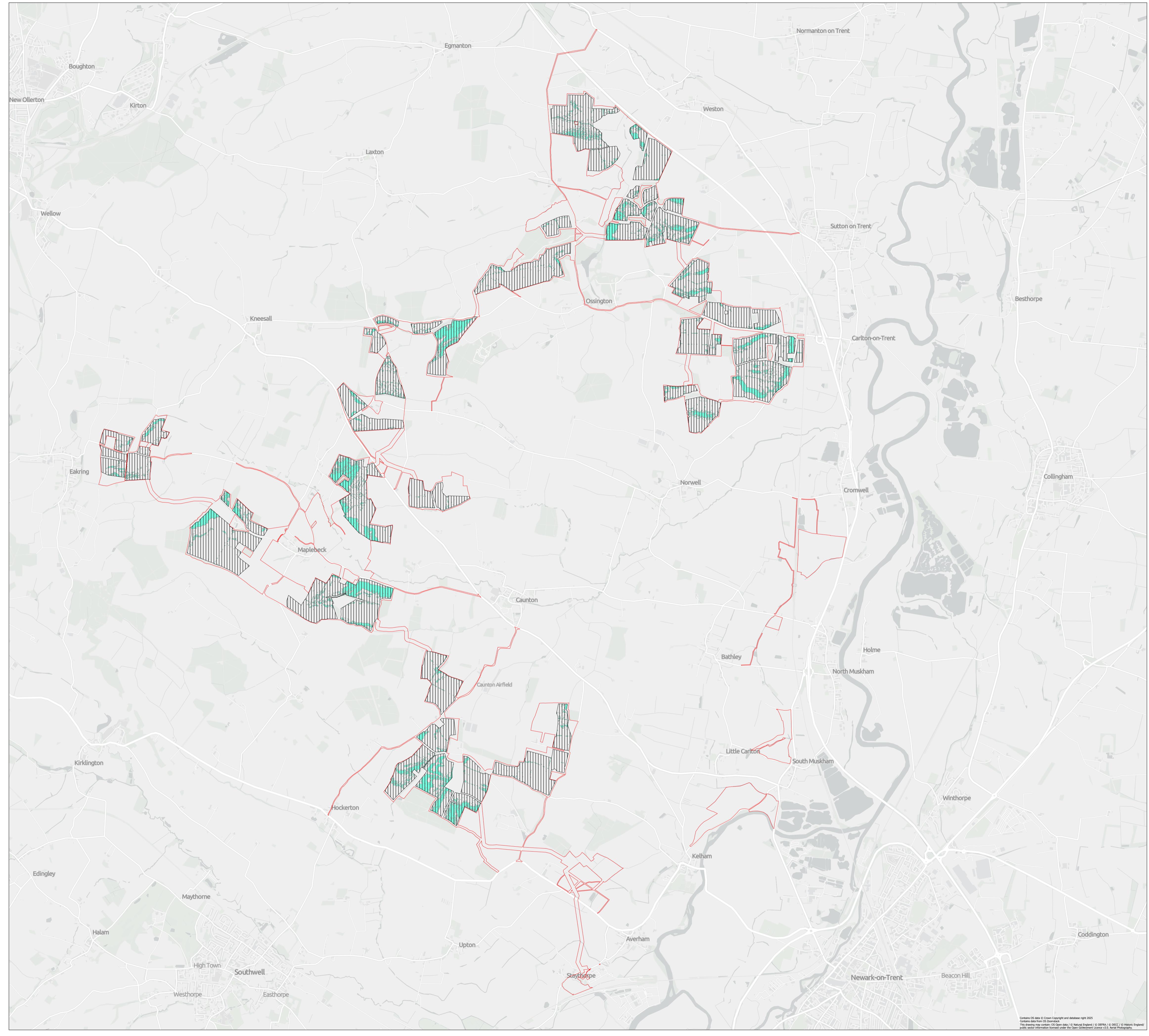
1 % AEP Undefended CCP1
Figure A9.20

Great North Road Solar and
Biodiversity Park
Flood Risk Assessment

 Order Limits / Core Study Area
 Works Area 3: Mitigation


1:30,000 Scale @ A1

0 0.5 1 2 km


Ref: 014-ES-059-Rev02 Date: 12/08/2025

RSuDS enhancement areas associated with the Development
Figure A9.22

Great North Road Solar and Biodiversity Park Flood Risk Assessment

Order Limits / Core Study Area
 Work Area 1: Solar PV
 Slope
 %
 0.001 - 6
 6+

1:30,000 Scale @ A1

0 0.5 1 2 km

Ref: 014-ES-061-Rev02 Date: 12/08/2025

Slope within Work Area 1 Figure A9.25

Great North Road Solar and
 Biodiversity Park
 Flood Risk Assessment

APPENDIX D: FRA CONSULTATION

Extracted from the **Consultation Report [EN010162/APP/5.1] [APP-296]**.

<u>Respondent</u>	<u>Comment</u>	<u>Applicant response</u>
<u>Nottinghamshire County Council</u>	<u>The Flood Risk Management Team has reviewed the Flood Risk Assessment (Technical Appendix A9.1) and is broadly satisfied with its content.</u>	<u>Noted.</u>
<u>Nottinghamshire County Council</u>	<u>However, the reference to flood alleviation measures to improve the existing flooding pathways to communities such as Maplebeck is somewhat misleading.</u>	<u>The FRA [EN010162/APP/6.4.9.1] acknowledges the intention to alleviate existing flooding problems through the NG+ fund and that this will be considered as a cumulative development and not part of the Development.</u>
<u>Nottinghamshire County Council</u>	<u>Whilst it is recognised that these schemes may be delivered within the order limits of this proposal, they would be secured separately through applications made to the LPA under the Town and Country Planning Act and will not be delivered directly as part of this development. Therefore, it is not recommended that these measures form part of the FRA for this application.</u>	<u>The FRA [EN010162/APP/6.4.9.1] acknowledges the intention to alleviate existing flooding problems through the NG+ fund and that this will be considered as a cumulative development and not part of the Development.</u>
<u>Environment Agency</u>	<u>Flood risk to the BESS and substation site could be underestimated. The BESS and substation may be at a greater risk of flooding than initially considered. Furthermore, the placement of the BESS and substation could increase flood risk elsewhere if not properly mitigated. The overland flow routes shown in the Risk of Flooding from Surface Water mapping,</u>	<u>Updated 1D-2D modelling has been undertaken to include an existing culvert under the A617, as outlined in the FRA (TA A9.1) [EN010162/APP/6.4.9.1].</u> <u>Updated results for the 1 % annual exceedance probability (AEP) + 39 % uplift for climate change (CC) shows that Works Area 5a and 5b are located</u>

particularly for the 0.1% (1 in 1000) AEP scenario should be reviewed. It appears the flood risk in this area is not from localised surface water ponding. This could be associated with some of the small ordinary watercourses which run close to the BESS. Any loss of floodplain for the design event should be compensated for on a level for level, and volume for volume basis. The BESS and substation are located in Flood Zone 1. There are small ordinary watercourses which cross the BESS and substation site, these have no associated Flood Zone mapping due to the small size of their respective catchments. The Risk of Flooding from Surface Water (RoFSW) dataset shows the BESS area to be inundated in the 1% (1 in 100) annual exceedance probability scenario (AEP) and the 0.1% (1 in 1000) AEP scenario. In some locations within the BESS area, water depths fall within the 0.30 - 0.60 metre band for the 0.1% (1 in 1000) AEP scenario. Inspection of the RoFSW flow direction dataset, appears to show water flowing south and southeast through the BESS and substation area. It is noted that in section A9.1.2.3 page 41 of Technical Appendix A9.1: Flood Risk Assessment (FRA) that electrically sensitive infrastructure such as inverters will be located outside of the surface water flooding extents. It is also noted that further 2D modelling will be undertaken post-PEIR to confirm the area of pluvial flooding at risk in the 1% AEP plus climate change scenario. This is welcomed.

outside the flood extent.

Updated 2D direct rainfall modelling has also been undertaken for Work Area 5a and 5b. Results correlate well with the updated Risk of Flooding Surface Water (2025) dataset.

<u>Environment Agency</u>	<p>This section notes that a sense check for fluvial flows will be undertaken for the credible maximum scenario. There are no details within the FRA, other than the reference to the higher central scenario for the 2080's epoch (plus 39%). It is not clear if the development would remain resilient and operational if upper climate change allowances were to materialise. Provide details within the FRA of the impact of a credible maximum scenario (upper fluvial flows) on the development. It should be demonstrated that the solar panels will remain operational should this scenario materialise. Furthermore, the BESS and substation should remain safe from flooding in this scenario.</p>	<p><u>Work Area 1: Solar PV is no longer located within the floodplain of the River Trent, including the 1 % AEP plus 39 % CC event.</u> <u>Only Work Area 2: Cables, Work Area 3: Mitigation and connections associated with Work Area 6 and Work Area 7 are located within the floodplain, however the works associated are either below ground (cables) or involve the creation of grassland etc which are compatible with the floodplain, will not result in a loss of storage or a perceptible effect on conveyance and will remain operational.</u></p>
<u>Environment Agency</u>	<p>The PEIR acknowledges the development will be operational between the 2050s and 2080's epochs. However, the design scenario that is proposed to be adopted for the development is the higher central scenario for the 2050's epoch. This reflects an uplift of 23% for the Lower Trent and Erewash management catchment. The FRA describes how the development would be decommissioned from 2069. Section A9.1.2.2.1.2 paragraph 83 of the FRA describes how given the time-limited nature of the application the use of a 30% climate change scenario is considered conservative and acceptable. The FRA notes that should there be a delay in the completion of construction of the development leading to operation into the 2080's the 39% allowance will be considered. The applicant has obtained model output data which includes the 1%</p>	<p><u>Paragraph 10 of the FRA [EN010162/APP/6.4.9.1] stated “the Development is Essential Infrastructure and will have a lifespan of 40 years (decommissioned from 2069)”.</u> <u>The Development has been designed to avoid placing above ground infrastructure within the extent of the 1 % AEP + 39 % CC event i.e. the Higher central climate change allowance for the 2080s epoch.</u> <u>Given that a conservative approach has been adopted for the majority of the epoch in which the Development will operate in and the potential for climate change allowances to change in future, it is considered that the Development has been designed appropriately.</u></p>

	<p>(1 in 100) annual exceedance probability plus 39% water levels and depths (2080s higher central scenario). A review of this data confirms that water levels for the solar panels are not substantially increased when compared to the 1% (1 in 100) AEP plus 30% climate change scenario. Some difference mapping is presented in Plate A9.1.29 of the FRA. A review of the water level data for these scenarios confirms that water level differences between the 1% (1 in 100) AEP plus 30% and 1% (1 in 100) AEP plus 39% scenarios is small, with the highest increase being 0.25 m for the largest panel area just to the north of Little Carlton.</p>	<p>The commitment in the oEMP [EN010162/APP/6.4.5.51] states that should the Development lifetime be anticipated to extend into the 2080s epoch, as a result of delays to the construction programme for example, then modelling will be undertaken in year 2069 using the appropriate climate change allowances at the time, in consultation with the EA (and other regulators). Should modelling results show that the Development has the potential to interact with flood depths then the Development design will be altered accordingly to ensure that flood storage and conveyance is maintained for the River Trent. This could involve raising the PV Arrays (subject to negligible loss of storage and conveyance), the removal of the first row of panels on a PV table or removing the mounting system and associated infrastructure from the modelled extent.</p>
<p>Environment Agency</p>	<p>The FRA has not clarified if the proposed lifetime of the development is the operational lifetime, or if it includes the construction and decommissioning phases. If the lifetime (including construction and decommissioning phase) is longer than proposed in the FRA, the project would extend into the 2080s climate change epoch. This can lead to an inadequate assessment of climate change flood risk. The FRA needs to clarify the timeline of the development and the complete lifetime. Additionally, delays should be factored into this assessment.</p>	<p>Paragraph 10 of the FRA [EN010162/APP/6.4.9.1] submitted with the PEIR stated “the Development is Essential Infrastructure and will have a lifespan of 40 years (decommissioned from 2069)”. <p>The Development has been designed to avoid placing above ground infrastructure within the extent of the 1 % AEP + 39 % CC event i.e. the Higher central climate change allowance for the 2080s epoch. Given that a conservative approach has been adopted for the majority of the epoch in which the Development will operate in and the potential for</p> </p>

		<p><u>climate change allowances to change in future, it is considered that the Development has been designed appropriately.</u></p> <p><u>The commitment in the oEMP [EN010162/APP/6.4.5.5] states that should the Development lifetime be anticipated to extend into the 2080s epoch, as a result of delays to the construction programme for example, then modelling will be undertaken in year 2069 using the appropriate climate change allowances at the time, in consultation with the EA (and other regulators). Should modelling results show that the Development has the potential to interact with flood depths then the Development design will be altered accordingly to ensure that flood storage and conveyance is maintained for the River Trent. This could involve raising the PV Arrays (subject to negligible loss of storage and conveyance), the removal of the first row of panels on a PV table or removing the mounting system and associated infrastructure from the modelled extent.</u></p>
<u>Environment Agency</u>	<p><u>The 1d-2d hydraulic modelling undertaken for the Car and Pingley Dyke suggests the BESS, and substation area, are not at risk from fluvial flooding from these watercourses, and the A617 acts as a barrier to flow. There could be some connectivity underneath the A617 at grid reference 475725, 355050. This could mean flood risk on the northeastern side of the A617, the BESS and substation is underestimated. The Detailed River</u></p>	<p><u>Updated 1D-2D modelling has been undertaken to include the existing culvert under the A617, as outlined in the FRA (TA A9.1) [EN010162/APP/6.4.9.11]. Updated results for the 1 % AEP + 39 % CC shows that Works Area 5a and 5b are located outside the flood extent of Pingley Dyke.</u></p>

	<p><u>Network (DRN) dataset suggests there is a small culvert underneath the A617 at grid reference 475725, 355050. Confirmation is required of any flow routes underneath the A617, and if there is a culvert underneath the A617 at grid reference 475725, 355050. If any culverts are present under the A617, these will need to be included within the 1d-2d linked model of the Car and Pingley Dyke. The outcome of this assessment would be prudent to assess whether the flood flows from the River Greet and can pass under the A617.</u></p>	
<u>Environment Agency</u>	<p><u>There is no evidence provided to demonstrate their will be no perceptible loss of flood storage or conveyance during times of flooding, from the solar panel metal support frames.</u> <u>The solar panel support frames could potentially increase flood risk due to loss of floodplain storage and impedance to flow. Where solar panel support frames fall within areas of fluvial flood risk, and specifically the design flood, the impact on flood risk to third parties should be quantified. This can be achieved using several different approaches. Firstly, the volume of floodplain lost could be calculated and presented within the Flood Risk Assessment (FRA). Alternatively, the impact of the solar panel mounting structures could be evaluated within the fluvial Trent hydraulic model. This can be completed using a 2d flow constriction layer or increasing the 2d floodplain roughness values.</u></p>	<p><u>Work Area 1: Solar PV has been removed from the floodplain and future floodplain (1 % AEP + 39 % CC), as shown on Plate A9.1.17 of the FRA (TA A9.1) [EN010162/APP/6.4.9.1].</u> <u>As such, there will be no effect on the conveyance of out of channel flows.</u></p>

<u>Environment Agency</u>	<p><u>Soffit levels for new crossings are not considered. Potential impediments to flood flows, and therefore increased flood risk elsewhere. Any proposed crossings should be designed so the soffit level of any bridges sits above the design flood level. The design flood level for permanent crossings in this case would be the 1% (1 in 100) annual exceedance probability (AEP) plus higher central climate change scenario. The present day (without climate change) 1% (1 in 100) AEP scenario can be used for temporary crossings during the construction phase of the scheme. Careful consideration will need to be given to how the design flood level will be determined for the proposed crossings. Typically, this would be determined by undertaking hydraulic modelling, or referring to existing detailed hydraulic modelling data (where available). The production of the new Risk of Flooding from Rivers and Sea dataset (at the end of January 2025) may provide some useful information which may help inform crossing soffit levels. If a reliance is being placed on existing flood risk products, such as the mapping to inform soffit levels, then clear justification should be provided as to why this is a suitable proxy for representing fluvial flood risk; taking into consideration the effects of climate change. The proposed crossings should be designed to not increase flood risk elsewhere.</u></p>	<p><u>Crossings will be designed following granting of the DCO and the oCEMP (TA A5.3) [EN010162/APP/6.4.5.3] has been updated at detailed design stage to commit to the soffit level of any bridges to sit above the design flood level. The design flood level for permanent crossings would be the 1% AEP plus Higher central climate change scenario (39 % CC) and will involve the following parameters:</u></p> <ul style="list-style-type: none"><u>Soffit height of the crossing will be a minimum of 600 mm above the 1 % AEP + Climate change allowance flood level.</u><u>All abutments must be set back a minimum 1 m from the top of bank and as minimal as possible.</u><u>Any loss of floodplain due to abutments and ramps will need to be compensated for.</u> <p><u>All parapets and railings need to be permeable and as open as possible with a minimum 100 mm spacing.</u></p> <p><u>The application is not seeking to disapply the EA's Protective Provisions and, therefore, the design of crossings will need to be approved by the EA prior to the construction phase.</u></p>
---------------------------	--	---

<u>Environment Agency</u>	<p>The development has not assessed the impact it may have on engineered flood defences and assets (engineered high ground). Consideration has not been given for access to maintain the assets and respond to emergency incidents. If assets are adversely impacted, this may lead to degradation and a lower standard of protection. If assets cannot be accessed in times of a flood and/or for maintenance, this can increase flood risk. There must be an assessment of the development's interactions and impacts on all flood defence assets within their site boundary. Additionally, access must be upheld and where possible improved to assets on site</p>	<p><u>ES Chapter 9, Water Resources</u> <u>EN010162/APP/6.2.91</u> assessed the potential effects from the Development on flood defences, including those classed as Engineered High Ground and concluded effects of Negligible magnitude.</p> <p><u>Work Area 2: Cables</u> has been removed from the Order Limits in proximity to asset ID 55462 (Engineered High Ground) and asset ID 46099 (Natural High Ground) on the left bank of the River Trent. As such, the Development will not directly interact with flood defences and access to the assets will remain unaffected.</p> <p>An updated assessment of the potential effects from the Development on flood defences is provided in Section 9.6.1.6 of the ES Chapter.</p>
<u>Trent Valley Internal Drainage Board</u>	<p>The Board will require all watercourses to be crossed by means of an appropriate trenchless method at a depth no less than 2 metres PLUS the safe working distance below the hard bed level of all watercourses (to ODN if EA or IDB maintained). The purpose of this requirement is to allow the IDB to maintain and have the flexibility to improve watercourses in the future due to climate change (works will include deepening & widening of watercourses).</p>	<p>Cable crossings will utilise horizontal directional drilling (HDD) as the default option. Open trench methods will only be utilised on manmade watercourses / ditches and smaller watercourses (less than 2 m width). No pipe flumes will be used.</p> <p>Regarding culverting, clear span bridge crossings will be used where possible and culverts will only be used where a bridging solution is not feasible i.e. field drains / ditches / smaller watercourses (less than 2 m width).</p>

<u>Trent Valley Internal Drainage Board</u>	<u>Any culverting or other works within the bed of any Board maintained watercourse be they temporary or permanent will require consent. It will usually be assumed that these structures will be temporary measures to accommodate haul roads etc.</u>	<u>Regarding culverting, clear span bridge crossings will be used where possible and culverts will only be used where a bridging solution is not feasible i.e. field drains / ditches / smaller watercourses (less than 2 m width).</u>
<u>Trent Valley Internal Drainage Board</u>	<u>It is anticipated that the above requirements would be covered by SOCGs, MOU, and via Protective Provisions within the DCO. This matter should be discussed further and in more detail as the proposed route is refined.</u>	<u>Noted.</u>
<u>Trent Valley Internal Drainage Board</u>	<u>Any culverting or other works within the bed of any riparian watercourse within the Board's district or extended area, be they temporary or permanent will also require consent.</u>	<u>Noted.</u>